TOPIC 1. STRUCTURE AND BONDING

OBJECTIVES

1. Introduction to organic chemistry and review of terms
2. Describe distribution of electrons in organic molecules (atomic electronic configurations, Lewis structures, resonance)
3. Describe bonding $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{H}$ bonds in organic molecules (hybridization, overlap of atomic orbitals).
4. Describe molecular geometry.
ORGANIC CHEMISTRY:
YESTERDAY, TODAY AND TOMORROW
Yesterday
Pre-1820: "Vitalism" - belief that "natural compounds" possessed special
properties, could not be made by man
1828: Wöhler: preparation of urea (organic) from ammonium cyanate
(inorganic)
$\mathrm{NH}_{4}{ }^{+} \mathrm{OCN}^{-} \xrightarrow{\text { heat }} \mathrm{CH}_{4} \mathrm{~N}_{2} \mathrm{O}$
1908: First production of a synthetic plastic, Bakelite
(1930s-50s: Commercialization of commodity plastics:
nylon, polyester, PVC, polyethylene, polypropylene)
1928: Discovery of penicillin (1954: Celphalosporin)
1948: α-helix of protein structure determined
(1952: Determination of double helix structure of DNA)
1950s: Oral contraceptives

Today			
Major commodities (annual US production)	Major US commodity Producers (Annual Sales)		Major Pharmaceuticals
			Prilosec
billion lb		billion\$	(Astra Pharm Inc., acid reflux)
Ethylene 55	Dow Dow	28	Lipitor
Propylene 32	DuPont (IUPOND	27	(Parke-Davis, high cholesterol)
Dichloroethane 22	BASF	25	Propecia
Urea 15	Bayer Bayer	18	(antibaldness) (13)
Ethybenzene 13			
Styrene 12	Shell Oil		
Styrene 12	Shell Oil	15	Prozac (Fluoxetine)
Ethylene oxide 9	BP Amoco	13	(Antidepresent. Lillv)
p-Xylene 8	Degussa	11	Viagra
Cumene 8	ICI Americas	9	(Pfizer)
1,3-Butadiene 4	SABIC	8	Zantac (Ranitidine)
Acrylonitrile 3	China Petroleum	8	(Antiulcer, Glaxo)
Benzene 2	Mitsui	8	Claratin (Schering, allergies)
Aniline 2	General Electric	7	Amoxicillin
Isopropanol 1	Union Carbide	6	(Antibiotic; SKB, Squibb)
o-Xylene 1	Air Products	5	Acetaminophen 10 TYIENOL
2-Ethylhexanol 1			Ibuprophen

Recently
Taxol (anticancer), C60-buckyball, Organic electronic materials (LCDs)

Tomorrow

Better food:
Nutrients
Pesticides
Fertilizers
Better health:

Pharmaceuticals
Biomedical engineered implants/replacements
Better environment:

Cleaner processes

Better living....

SOME BASIC STRUCTURAL FEATURES

Empirical Formula

- Ratio of atoms in a compound.

Molecular Formula

- Number of each atom in a molecule.

Valency

- Elements form a fixed number of bonds (H 1, O 2, N 3, C 4).

Structure

- Arrangement of atoms and bonds in a molecule.

Isomers

- Different compounds with the same molecular formula.

Constitutional isomers

- Compounds with the same formula, but with different connectivities of atoms.

A VERY GOOD PLACE TO START: ELECTRONIC CONFIGURATION OF ATOMS

H	$1 \mathrm{~s}^{1}$	
He	$1 \mathrm{~s}^{2}$	
Li	$1 s^{2}, 2 s^{1}$	
Be	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}$	
B	$1 s^{2}, 2 s^{2}, 2 p^{1}$	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}_{\mathrm{x}}{ }^{1}$
C	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{2}$	$1 s^{2}, 2 s^{2}, 2 p_{x}{ }^{1} 2 p_{y}{ }^{1}$
N	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{3}$	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 p_{\mathrm{x}}{ }^{1} 2 p^{1}{ }^{1} 2 p_{\mathrm{z}}{ }^{1}$
O	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{4}$	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 p_{\mathrm{x}}{ }^{2} 2 p_{\mathrm{y}}{ }^{1} 2 \mathrm{p}_{\mathrm{z}}{ }^{1}$
F	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{5}$	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}_{\mathrm{x}}{ }^{2} 2 \mathrm{p}_{\mathrm{y}}{ }^{2} 2 \mathrm{p}_{\mathrm{z}}{ }^{1}$
Ne	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{6}$	$1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 p_{\mathrm{x}}{ }^{2} 2 p_{\mathrm{y}}{ }^{2} 2 p_{\mathrm{z}}{ }^{2}$

BONDING: LEWIS STRUCTURES AND FORMAL CHARGES

The Octet Rule

Atoms exchange or share electrons to complete the valence shell (adopt Noble gas electronic configuration)

Ionic Bonds
Atoms exchange electrons to form ions which are electrostatically attracted to one another.
$\mathrm{Li}+\mathrm{F} \longrightarrow \mathrm{Li}+\mathrm{F}$

Ionic bonds are typically formed between atoms which are highly electronegative and highly electropositive

Covalent Bonds

Atoms share valence shell electrons to form covalent bonds

$\mathrm{OH} \mathrm{H} \longrightarrow$

"Exceptions" to the Octet "Rule"

Octet rule is the tendency to have eight valance electrons - only applies strictly to second row elements

Formal Charge

$F=z-(S / 2)-u$

Always show all formal charges in all structures!

Some Common Valencies

$-\mathrm{C}-$
$-1+$
Not:

RESONANCE THEORY

e.g., Carbonate, $\mathrm{CO}_{3}{ }^{2-}$: A single Lewis structure does not accurately describe the structure of the carbonate dianion.

Molecules and ions that can be represented by more than one valid Lewis structure which differ only in the position of non-bonding electrons and double bonds exist as a hybrid of each contributing resonance structure.

Resonance structures ("contributors")

The hybrid is a combination (average) of all the contributing Lewis structures. It is more stable than the individual structures.

Guidelines for Recognizing and Drawing Resonance Structures

- Individual resonance structures do not exist - the hybrid does. The energy of the actual molecule is lower than what might be predicted for any of the contributing structures
- Resonance structures which possess features that impart stability contribute more to the hybrid structure. Stability is enhanced by:
- Equivalent resonance structures contribute particular stability to the molecule
- More bonds, stronger bonds
- Complete valence shells (as opposed to incomplete valence shells)
- Little (no) charge separation (separating charges costs energy!)
- Negative charge on electronegative atoms (and visa versa) | most \dagger |
| :---: |
| important |
| least |

Which structure in each pair is the more stable major contributor to the resonance hybrid? [Consider the factors that contribute to the stability/instability of each resonance structure]

Problem: Which of the following sets of curved arrows accurately represents resonance? [Draw the structures implied by the movement of electrons shown by the arrows, which of the species is a valid Lewis structure?]

QUANTUM MECHANICS, ATOMIC ORBITALS AND MOLECULAR ORBITALS

Electrons are contained in atomic orbitals

Atomic orbitals overlap to form molecular orbitals

$H 1 s^{1}$

Carbon:

Filling Orbitals

maximum of two e^{-}per orbital Aufbau Principle: ${ }^{-}$fill lower energy orbitals Pauli Principle: e^{-}in same orbitals have different spins Hund's rule: degenerate orbitals are filled equally

METHANE AND ETHANE: sp 3 HYBRIDIZATION

e.g., methane, CH_{4}

Hybridization

Orbital overlap

methane, CH_{4} : gas ($\mathrm{bp}=-161^{\circ} \mathrm{C}$). Used as natural gas, for synthesis of other compounds

0 sen
e.g., ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$

ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$: gas ($\mathrm{bp}=-88^{\circ} \mathrm{C}$). Used in manufacture of C 2 derivatives;
Minor constituent of natural gas.

ALKENES: sp² HYBRIDIZATION

e.g., ethene (ethylene)

approx. 120°

ethene (ethylene), $\mathrm{C}_{2} \mathrm{H}_{4}$: gas ($\mathrm{bp}=-102^{\circ} \mathrm{C}$). Monomer for preparation of polyethylene, used for synthesis of ethylene oxide.

Alkenes are thermally stable and do not undergo rotation around the $\mathrm{C}=\mathrm{C}$ bond.

Constitutional and Geometric Isomers of Alkenes

$\mathrm{Cl}_{2} \mathrm{C}=\mathrm{CH}_{2}$

$\mathrm{ClCH}=\mathrm{CHCl}$

Geometric isomers have the same connectivity of atoms, but different spatial arrangements.

	cis	trans
	4	1
$\mathrm{bp} /{ }^{\circ} \mathrm{C}$	-139	-104
$\mathrm{mp} /{ }^{\circ} \mathrm{C}$		

ALKYNES:

sp HYBRIDIZATION

e.g., ethyne (acetylene)
1.20 Å $200 \mathrm{kcal} / \mathrm{mol}$

ethyne (acetylene), $\mathrm{C}_{2} \mathrm{H}_{2}$: gas ($\mathrm{bp}=-81^{\circ} \mathrm{C}$). Used in oxy-acetylene welding torches, for manufacturing of acetic acid.

Comparing C-H Bond Lengths in Alkanes, Alkenes and Alkynes

$$
\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}
$$

$\mathrm{C}-\mathrm{H}$ bond lengths

$$
\begin{gathered}
1.10 \AA \\
\mathrm{Csp} p^{3}+\mathrm{H} 1 \mathrm{~s}
\end{gathered}
$$

$$
\begin{gathered}
1.08 \AA \\
\mathrm{Csp}^{2}+\mathrm{H} 1 \mathrm{~s}
\end{gathered}
$$

$$
1.06 \text { Á }
$$

$$
\mathrm{Csp}+\mathrm{H} 1 \mathrm{~s}
$$

VALENCE SHELL ELECTRON PAIR REPULSION THEORY

VSEPR Theory - use to predict shape of molecules
Pairs of valence e^{-}(in bonds and lone pairs) repel each other

$$
\mathrm{H}-\mathrm{O}-\mathrm{H}
$$

$s p^{3}$ carbon atoms are tetrahedral: Practice drawing tetrahedra!

Using VSEPR theory, what are the approximate geometries of the following molecules?

A

H
2 A, tetrahedral; B, tetrahedral; C, trigonal planar
3 A, trigonal planar; B, tetrahedral; C, linear
4 A, tetrahedral; B, trigonal planar; C, linear
5 A, trigonal planar; B, trigonal planar; C, linear
C $\mathrm{H} \cdot \mathrm{C}: \vdots \mathrm{N}:$

REPRESENTING ORGANIC

 MOLECULES IN 2D AND 3De.g., Propane $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$

dash	condensed		
structure	bond-line	structure	3-D
structure	structure		

line = bond
bond end, angles, nodes = carbon
Do not show H on C ; do show H on other atoms
Assume C is tetravalent unless charges/electrons are shown
Remember you must always show heteroatoms and hydrogen atoms on heteroatoms. It is recommended that you always show lone pairs, however sometimes lone pairs are not shown. Even if lone pairs are not shown, you need to be able to identify when they are present (consider octet rule and presence of charges)

Problem. What is the molecular formula of each of the following compounds shown as bond-line structures?

How many hydrogen atoms are there in norethindrone?

122
224
325
426
528

Constitutional Isomers

Given the common valencies of atoms $(\mathrm{C}=4, \mathrm{H}=1)$, there might be a number of possible arrangements. These different structures are called constitutional isomers. Draw all the constitutional isomers with molecular formula $\mathrm{C}_{4} \mathrm{H}_{10}$.

BOND STRENGTHS

Orbital Energy Diagrams

atomic orbital
Hs; or $s p, s p^{2}, s p^{3}, p$

Strong bonds are formed between atoms with similar size.
Long bonds are often weak.

Representative Bond Lengths and Strengths

	bond length \AA	bond strength	
$\mathrm{kcal} / \mathrm{mol}$	$\mathrm{kJ} / \mathrm{mol}$		
$\mathrm{H}-\mathrm{H}$	0.74	104	435
$\mathrm{H}-\mathrm{F}$	0.92	136	571
$\mathrm{H}-\mathrm{Cl}$	1.27	103	432
$\mathrm{H}-\mathrm{Br}$	1.41	87	366
$\mathrm{H}-\mathrm{I}$	1.61	71	289
$\mathrm{H}-\mathrm{O}$	0.97	110	460
$\mathrm{H}-\mathrm{C}$	1.10	99	414
$\mathrm{C}-\mathrm{C}$	1.55	88	368
$\mathrm{C}=\mathrm{C}$	1.33	152	636
$\mathrm{C}=\mathrm{C}$	1.20	200	837
$\mathrm{C}-\mathrm{O}$	1.43	80	355
$\mathrm{C}=\mathrm{O}$	1.21	191	799
$\mathrm{C}-\mathrm{F}$	1.38	110	461
$\mathrm{C}-\mathrm{Cl}$	1.77	79	330
$\mathrm{C}-\mathrm{Br}$	1.95	67	280
$\mathrm{C}-\mathrm{I}$	2.14	57	240
$1 \mathrm{~A}=10.10$			
	$\mathrm{~m}=100 \mathrm{pm}$	1 kcal $=4.18 \mathrm{~kJ}$	

Structure \Rightarrow Function

Physical Properties of $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}$

isopropyl alcohol	ethyl methyl ether
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}$	$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{3}$
water-miscible	water-insoluble
$b p=82^{\circ} \mathrm{C}$	$\mathrm{bp}=8^{\circ} \mathrm{C}$

Reactivity of $\mathrm{C}_{6} \mathrm{H}_{12}$

1-hexene	cyclohexane
$\downarrow \mathrm{Br}_{2}$	$\downarrow \mathrm{Br}_{2}$
$\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Br}$	no reaction

You know a lot about organic structures!
Problem. Norethindrone, is a steroidal oral contraceptive. Identify the hybridization and geometry of each atom, and the length and overlap of atomic orbitals for each bond.

SUMMARY: MOLECULAR STRUCTURE CONCEPTS, MODELS, RULES AND THEORIES

Concept	Prediction
Valency/ Octet rule	Presence of lone pairs Formal charges
Bonding	Covalent bonds between atoms of similar electronegativity lonic bonds between atoms of different electronegativity
VSEPR	Molecular geometry
Hybridization	Molecular geometry
Resonance	Charge distribution

TOPIC 1 ON EXAM 1

Types of Questions

- Identify formal charges, geometry (bond lengths, angles), hybridization.
- Draw and recognize resonance structures, constitutional isomers, atomic and molecular orbitals.

Preparing for Exam 1

- Get up-to-date NOW!
- Work as many problems as possible. Do the problems first, then consult the solutions manual.
- Work in groups, discuss chemistry, teach and test each other.

