TOPIC 7. ELIMINATION REACTIONS

OBJECTIVES

- 1. Describe mechanisms for elimination of a leaving group and adjacent proton to form a pi-bond.
- 2. Discuss the effect of starting material ("substrate"), leaving group, and reaction conditions on the course and outcome of a reaction.
- 3. Describe syntheses of alkenes and alkynes.
- 4. Use combinations of elimination and substitution reactions in developing two-step syntheses of value-added compounds.

ALKENES: STRUCTURE, NOMENCLATURE, AND STABILITY

Systematic Nomenclature

e.g.,

 $C = C$ F Br H_3C H

Assign Cahn-Ingold-Prelog priority to substituents on each *sp*² carbon Highest priority on

> same side: *Z* (zusammen=same) opposite sides: *E* (entgegen=opposite)

Problem: Name the following compound

Problem: Provide IUPAC names for the following alkenes

Problem: Determine the *E*/*Z* configurations of the double bonds in each of the following alkenes

Relative Stability

Heats of Hydrogenation

Overall Stability

Number of substituents $\uparrow \Rightarrow$

Remember hyperconjugation?

Hyperconjugation accounts for the enhanced stability of cations, radicals and alkenes with higher degrees of substitution.

Carbocation **Radical** Alkene

relative stability

stability explains

Cycloalkenes

cyclopropene cyclobutene cyclopentene

cyclohexene cycloheptene

cyclooctene

strain energies: 15 kcal/mol 27 kcal/mol

cis cyclooctene *trans* cyclooctene

PREVIEW OF FORMATION OF ALKENES & ALKYNES BY ELIMINATION REACTIONS

BASE-PROMOTED DEHYDROHALOGENATION OF ALKYL HALIDES

$$
H_3C \xrightarrow{\text{CH}_3} H_2O
$$
\n
$$
CH_3 \xrightarrow{\text{H}_2O}
$$

but:

 CH_3 $CH₃$ ${\sf H_3C}\!\!\!\!\longrightarrow\!\!\!\!\!\!\!\!\!\!=$ Br NaOH

ELIMINATION MECHANISMS

Bimolecular Elimination (E2) Reaction

Rate = *k*[R-L][base]

Unimolecular Elimination (E1) Reaction

Rate = *k*[R-L], independent of [base]

Br H

Substitution and elimination mechanisms might be competitive pathways in a reaction mixture. The outcome of a reaction depends on:

- i. the *structure* of the substrate (steric hindrance to nucleophilic attack)
- ii. the *basicity* of the nucleophile

Observations and Explanations

Summary

3° substrates only undergo substitution with weakly basic nucleophiles (ROH, H₂O, RCO₂H). Stronger bases promote elimination. 1° substrates generally undergo substitution unless the base itself is sterically crowded (*e.g.*, *t*-BuO-).

Summary

3° substrates only undergo substitution with weakly basic nucleophiles (ROH, H2O, RCO2H). Stronger bases promote elimination. 1° substrates generally undergo substitution unless the base itself is sterically crowded (*e.g.*, *t*-BuO*–*).

Summary

3° substrates only undergo substitution with weakly basic nucleophiles (ROH, H_2O , RCO₂H). Stronger bases promote elimination. 1° substrates generally undergo substitution unless the base itself is sterically crowded (*e.g.*, *t*-BuO*–*).

STEREOCHEMISTRY AND REGIOCHEMISTRY

Anti-Zaitsev Elimination

1. Use of bulky bases can lead to formation of "anti-Zaitsev" products

2. Formation of "anti-Zaitsev" products via the Hofmann Elimination

Orientation of E2 Eliminations

Antiperiplanar: preferred orientation for elimination

Synperiplanar: slower elimination

Explain the observation that *cis*-4-t-butyl cyclohexyl chloride undergoes elimination with a strong base 500 times faster than the *trans* isomer

DEHYDROBROMINATION AND DEBROMINATION OF VICINAL DIBROMIDES

Problem. Why does treatment of 1,2-dibromocyclohexane give 1,3 cyclohexadiene, not an alkyne?

ACID-PROMOTED DEHYDRATION OF ALCOHOLS

Acid-Promoted Elimination

Ease of dehydration:

 3° > 2° >> 1°

Proceeds under relatively Requires relatively mild conditions 85 °C 20% aq. $H_{2}SO_{4}$

harsh conditions 180 °C conc. H_2SO_4

Ease of Formation of Carbocations: Kinetics vs. Thermodynamics

Stability of *starting material and products* of a reaction relates to *thermodynamics* (equilibrium). The relative energy of the *starting material and transition state* relates to the *rate of the reaction* (kinetics).

Mechanism: Dehydration of 2° and 3° Alcohols by E1

Mechanism: Dehydration of 1° Alcohols by E2

Rearrangement of Carbocations During Elimination

Carbocations rearrange by hydride or alkyl shifts: $2^{\circ} \rightarrow 3^{\circ}$

A SUMMARY OF REACTIONS

SYNTHETIC STRATEGIES: TWO (OR MORE) STEP SYNTHESES

At the end of Topic 6 you were challenged to recognize one-step synthetic transformations. But not all transformations can be achieved in one step. For example, there is no method to dehydrogenate $(i.e.,$ remove H_2) alkanes. So how would you bring about the following transformation?

You need to recognize that there is a single intermediate which can: 1. be made from the starting material, *and* 2. be transformed into the desired product

Problem: What two-step process can be used to achieve the following overall transformation?

Problem: This process can, of course, be extended to longer sequences of reactions. How could you prepare decane from bromohexane, bromoethane and ethyne?

Problem: Reaction of trans-1-bromo-2-methylcyclohexane with sodium ethoxide, a non-bulky base, results in formation of 3-methylcyclohexene, the anti-Zaitzev product. Explain.

TOPIC 7

Types of Questions

- Describe elimination reaction mechanisms
- Predict the products of elimination reactions
- Describe some simple reactions of alkenes (hydrogenation) and alkynes (acidity, hydrogenation)