YOU MAY USE A SMALL MODEL KIT ON THIS EXAM

1. (32 points) Circle the letter *on the right* which corresponds to the answer to each question. There is only one correct answer for each question.

- 2. (32 points).
 - (a) (8 points) Compound A, C_6H_{10} , rotates plane polarized light. Hydrogenation of A gives B, C_6H_{12} . Provide structures of A and B consistent with this data.

Α	В

(b) (8 points) Draw line-bond structures of the following compounds

(i) bicyclo[3.2.0]heptane	(ii) 4-bromo-5-methyl-2-cyclohexenol

(c) (8 points) Draw the most stable chair conformation of the following compounds

(i) <i>trans</i> 1-isopropyl-2-methylcyclohexane	(ii) trans 1-tert-butyl-3-methylcyclohexane

(d) (8 points) Provide the value of SODAR (hydrogen deficiency index) of the following two molecular formulas.

C ₇ H ₁₀ O ₃	C ₆ H ₁₂ BrNO ₂

3. (36 points).

- (c) (10 points) The specific rotation, $[\alpha]$, of the pure S enantiomer of compound **C** is -50°. A student prepared a mixture of R and S enantiomers of **C**. She took 0.2 g of the mixture, dissolved it in 1.0 mL of chloroform and measured an optical rotation of +5° in a 10 cm polarimeter tube.
 - (i) Which enantiomer is in excess in the mixture?
 - (ii) What is the %ee of the mixture? _____%
 - (iii) What mass of the S enantiomers is present in 100 g of the mixture?
- (d) (8 points) Assign the R/S configurations to the stereogenic centers in the following two molecules

- (e) (9 points) How many stereoisomers exist for each of the following compounds?
 - (i) 2-methyl-2-pentanol
 - (ii) 3-methyl-2-pentanol
 - (iii) 4-methyl-2-pentanol