CHEM 2311 E3 practice-ii (answers provided)

1. (32 points) Circle the letter *on the right* which corresponds to the answer to each question. There is only one correct answer for each question.

(i) Which of the following is the definition of a Lewis base?

 A. A proton donor C. A hydroxide ion donor 	B. An electron pair donor D. An electron pair acceptor	A B
		С

D

E F G

н

I

J K

L

v

BB

(ii) In which of the following solvents will acetic acid dissociate to the greatest extent?

E. $Cl_2C=CCl_2$ **F.** CCl_4 **G.** $(CH_3CH_2)_2O$ **H.** H_2O

(iii) What product(s) would be formed in the following $S_N 2$ reaction?

(iv) Which is the weakest nucleophile in polar aprotic solvents?

Μ **M.** I ⁻ N. Br⁻ **O.** Cl⁻ **P.** F ⁻ Ν Ο Ρ (v) Which of the following statements is not true regarding reaction of (R)-2-bromobutane with NaOCH₃? Q. Doubling the hydroxide ion concentration would double the rate of the reaction. (Assume that Q all other experimental conditions are unchanged.) R R. The reaction occurs with inversion of configuration. S S. Doubling the concentration of (R)-2-bromobutane would double the rate of the reaction. Т (Assume that all other experimental conditions are unchanged.) T. The rate of reaction decreases at higher temperatures U (vi) Which of the following is the poorest leaving group? V W **U.** I⁻ V. Br -W. Cl -**X.** H⁻ Х

(vii) Which of the following nucleophilic substitution mechanistic steps would be least likely to occur?

Y. Br + CH ₃ –OH ₂ ⁺ \rightarrow CH ₃ –Br + H ₂ O	Z. I ^{$-$} + CH ₃ –Cl \rightarrow CH ₃ –I + Cl ^{$-$}	1
AA. $NH_3 + CH_3 - OH_2^+ \rightarrow CH_3 - NH_3^+ + H_2O$	BB. $(CH_3)_3C$ -Br $\rightarrow (CH_3)_3C^+$ + Br	Z
		AA

(viii) Which of the following alkyl halides is most reactive in S_N1 reactions?

(CH ₃) ₂ C=CHCI	CH ₃ CH ₂ CH ₂ CH ₂ CI	CI CI CI			CC DD
1	2	3	4		EE FF
CC. 1	DD. 2		EE. 3	FF. 4	

2. (25 points) Give structures of the major organic product(s) for each of the following reactions.

3. (9 points) Explain why treatment of *tert*-butyl methyl ether with cold conc. HI gives methanol and *tert*-butyl iodide and *not tert*-butyl alcohol and methyl iodide

4. (12 points) Suggest syntheses of the following molecules from an appropriate alkyl halide and any other starting materials. [Both of these can be completed in a single synthetic step. Show starting materials and reagents, NOT the mechanism]

5. (10 points) Suggest a synthesis of 3-methyl-3-ethoxypentane from 3-methyl pentane . [*This transformation* cannot be completed in a single synthetic step. Show starting materials, isolated synthetic intermediates, and reagents; NOT the mechanism]

6. (12 points) Explain the following order of reactivity *in terms of structural features*. Draw a key structure if it helps in providing an explanation.

(a) Acetylene, HC=CH, is a stronger acid than ethane, CH_3CH_3 .

(b) Trimethylamine, $(CH_3)_3N$, is a stronger base than acetonitrile, CH_3CN .