Practice Exam 4ii - Answers

1. B, E, J, N, R, X, Y, DD

2.

4. Here are some descriptions of the routes: You should be able to put together the synthetic schemes.

The challenge: you cannot selectively brominate adjacent to an alcohol.	The challenge: to install a hydroxyl and a methoxy group trans to one another	The challenge: To incorporate an alkyne at te end of the C=C of the starting material.
Retrosynthesis: You know how to make a bromohydrin from an alkene. The alkene required here is cyclohexene, which you can make from cyclohexanol 2 steps – Treat the lcohol with	Retrosynthesis: This is tricky – but you need to recognize that the product can be formed by nucleophilic ring opening of cyclohexene oxide with methoxide.	Retrosynthesis: The product can be made by reaction of a 1° bromide wth sodium acetylide in an S_N^2 reaction. The 1° bromide can be made by anti-Markovnikov addition of HBr to the alkene
a strog acid to promte dehydration to give	2 steps – Epoxiation (mCPBA) of cyclohexene fgives an	starting material.
cyclohexene. Treat the cyclohexene with Br ₂ in H ₂ O.	epoxide, which upon treatment with NaOCH $_3$ give the product.	2 steps- Anti-Markovnikov addition of HBr in the presenceof peroxides gives 1- bromo-3,3- dimethylbutane.Reaction with sodium aceytlide gives the final product.

5. Base promoted double dehydrobromination of 1,2dibromocyclohexane gives 1,3-cyclohexadiene, not cyclohexyne. Cyclohexyne would be very unstable because the *sp* hybridized carbon atoms are forced to bend in a relatively small ring. This strain energy is so high that cyclohexyne has never been isolated at room temperature.

