E5 practice ii

CC. BrCH₂CHBrCH=CH₂

EE. (Z) BrCH₂CH=CHCH₂Br

- 1. (32 points) Circle the letter *on the right* which corresponds to the answer to each question. There is only one correct answer for each question.
- (i) Which of the following dienes undergoes the least exothermic hydrogenation upon treatment with H_2/Pt ?
- A. (E,E) CH₃CH=CHCH=CHCH3B. (E) CH₂=CHCH=CHCH₂CH3CC. (Z) CH₃CH=CHCH₂CH=CH2D. CH₂=CHCH₂CH2CH=CH2D

A B

Ε

(ii) Which of the following carbocations is most stable (remember to take resonance structures into account)?

DD. (E) BrCH₂CH=CHCH₂Br

FF. (E) BrCH₂CH=CBrCH₃

2. (38 points)

(a) Provide the structure of the major organic products of the following reactions.

(b) Draw two *low energy* resonance structures for each of the following species (there may be more than two possible answers)

3. 3. (30 points) The following transformations cannot be completed in a single step. Provide a sequence of reactions to perform each transformation, showing the reagents and structures of *all isolated synthetic intermediates*. <u>The synthesis must use the given starting materials; you may also use any other starting materials with 3 or fewer carbon atoms. You may use any reagents</u>. Do *not* show mechanisms or the structures of reactive intermediates. Shorter, more efficient syntheses are preferred; overly long or inefficient sequences will lose some credit.

