CHEM 2311 E6 practice-i (answers provided)

COPIES OF TABLES 2.7, 9.1, and 9.2 are attached You may use a calculator on this exam

Atomic Masses: H, 1.008; C, 12.01; N, 14.007; O, 15.999

1.	· ·	,		<i>the right</i> wh r each ques		ponds to the answer to each questic	n. There is	
(i) What type of electromagnetic radiation is absorbed during the NMR experiment?								
.,	A. X-ray	B. mic	rowave	C. ultra	violet	D. radio frequency	B C D	
(ii)	(ii) In the ¹ H NMR spectrum of ethanol, the protons of the methyl group appears at δ = 1.2 ppm as a triplet. What principle allows you to predict that it would be a triplet?							
	E. integrat	ion F.	chemical s	shift C	3. N + 1 rule	e H. shielding	F G H	
(iii) Predict the splitting pattern you would observe for the proton at C3 of 2,3-dimethyl-2-phenylbutane.?								
	I. singlet	J.	sextet	K. qu	artet	L. septet	I J K	
(iv)	How many M. 3	^{, 13} C signals N. 4	would 1,3- 0. 5	dichlorobenz P. 6	ene give?		L	
	IVI. 3	IN. 4	0.5	F. 0			м	
(v)	0.00 ppm.	In the corres	sponding c		ound, 2,2-di	IS) are highly shielded and appear at δ = methylpropane, the methyl groups appe		
						ilicon is larger than carbon o coupling of H to Si	Q	
(vi)	A C ₇ comp	ound which	gives 3 sig	nals in the ¹³	C NMR spe	ectrum could be:	R S T	
	U. 2-Meth W. 2,4-Dir	iylhexane nethylpentar		3-Dimethylpe X. 2,2,3-	entane Frimethylbu	tane	·	
(vii) A compou	nd, C₅H ₁₁ Cl,	which exh	ibits <u>only</u> two	singlets in	the ¹ H NMR spectrum must be:	U V W	
				Z. 3-Chlo e BB. 1-Ch		nylbutane	X	
(vii	i) In ¹³ C NM	IR spectrosc	opy, the sig	gnal due to w	/hich type o	of carbon occurs furthest downfield.	Y Z	
	CC. C-O	DD. C	-F E	EE. C=C	FF.C=C)	AA BB	

CC DD EE

FF

- 2. (24 points)
 - (a) Provide a single structure consistent with the following data (there is a single correct answer for each part).

(i) Compound **A**: C_3H_6O which boils at 78 °C (the highest boiling C_3H_6O compound)

(ii) Compound **B**: C₃H₇Br ¹H NMR: a septet (1H) downfield from a doublet (6H)

(iii) Compound **C**: C₅H₁₂O ¹H NMR: two singlets

(iv) Compound **D**: C₈H₈Cl₂ ¹H NMR: two singlets

(b) Compound **E**, which contains only C, H, and O gives a combustion analysis of C55.82%; H 6.94%

(i) What is the *empirical formula* of **E**?

(ii) What is the smallest possible molecular formula for E?

3.	(19 points) Refer to the data provided on the next page.	NOTE: Parts (a)-(i) are worth TWO POINTS
	each, (j) is worth ONE POINT. Each part is graded ind	ependently, without reference to other
	answers	

Analysis of Combustion Analysis/Mass Spectrum/Empirical Formula

- (a) What is the molecular formula?
- (b) What is the value of SODAR?

Analysis of the ¹³C NMR spectrum:

(c) How many types of carbon are there in the molecule:

(d) Is a carbonyl present? (circle one) Yes No

(e) How many types of aromatic carbons are there?

Analysis of IR spectrum (in conjunction with formula and ¹³C NMR)

(f) Which of the following are present? (circle all that are present)

O-H C-O C=O

Analysis of ¹H NMR spectrum

(g) How many types of proton are there in the molecule?

(h) What is the ratio of the number of each type of proton? (*i.e.*, 6:3:2:1)

(i) How many aromatic hydrogens are there?

Putting it all together

(j) Suggest a single structure for the molecule.

INFRARED ABSORPTION VALUES

INFRARED ABSORPT	ION VALUES	
Group	Frequency Range (cm ⁻¹)	Intensity
A. Alkyl		
C-H (stretching)	2583-2962	(m-s)
Isopropyl, -CH(CH ₃) ₂	1380-1385	(s)
	and 1365-1370	(s)
<i>tert</i> -butyl, $-C(CH_3)_3$	1385-1395	(m)
	and ~1365	(s)
D 411 1		
B. Alkenyl	2010 2005	()
C-H (stretching)	3010-3095	(m)
C=C (stretching R-CH=CH ₂	1620-1680 985-1000	(v)
K-CII-CII2	and 905-920	(s) (s)
$R_2C=CH_2$	880-900	(s) (s)
cis-RCH=CHR	675-730	(s)
trans-RCH=CHR	960-975	(s)
	200 270	(5)
C. Alkynyl		
≡C-H (stretching)	~3300	(s)
$C \equiv C$ (stretching)	2100-2260	(v)
D. Aromatic		
Ar-H (stretching)	~3030	(v)
Aromatic substitution type		
(C-H out-of-plane bendings)		
Monosubstituted	690-710	(very s)
	and 730-770	(very s)
o-Disubstituted	735-770	(s)
<i>m</i> -disubstituted	680-725	(s)
. dissibution d	and 750-810	(strong s)
<i>p</i> -disubstituted	800-860	(strong s)
E. Alcohols, Phenols, and Carbo	oxylic Acids	
O-H (stretching)	JAYINE / Telds	
Alcohols, phenols (dilute solu	ution) 3590-3650	(sharp, v)
Alcohols, phenols (hydrogen		(broad, v)
Carboxylic acids (hydrogen b		(broad, v)
F. Aldehydes, Ketones, Esters a		
C=O (stretching)	1630-1780	(s)
Aldehydes	1690-1740	(s)
Ketones	1680-1750	(s)
Esters	1735-1750	(s)
Carboxylic Acids	1710-1780	(s)
Amides	1630-1690	(s)
G. Amines		
N-H	2200-2500	(m)
	2200-2300	(III)
H. Nitriles		
C≡N	2220-2260	(m)
		. /

s = strong; m = medium, w = weak, v = variable

APPROXIMATE PROTON CHEMICAL SHIFTS

Type of Proton	Chemical Shift (δ, ppm)
1° Alkyl, RC H ₃	0.8-1.0
2° Alkyl, RCH ₂ R	1.2-1.4
3° Alkyl, R ₃ C H	1.4-1.7
Allyllic, $R_2C=C-CH_3$	1.6-1.9
l R	
Ketone, $RCCH_3$	2.1-2.6
O II	
Benzylic, $ArCH_3$	2.2-2.5
Acetylenic, RC≡CH	2.5-3.1
Alkyl iodide, RCH_2I	3.1-3.3
Ether, $ROCH_2R$	3.3-3.9
Alcohol, $HOCH_2R$	3.3-4.0
Alkyl bromide, RCH ₂ Br	3.4-3.6
Alkyl chloride, RCH_2Cl	3.6-3.8
Ainylic, $R_2C=CH_2$	4.6-5.0
Vinylic, $R_2C=CH$	5.2-5.7
l R	
Aromatic, Ar-H	6.0-9.5
Aldehyde, RCH	9.5-10.5
O II	
Alcohol hydroxyl, ROH	0.5-6.0
Amino, RNH_2	1.0-5.0
Phenolic, ArOH	4.5-7.7
Carboxylic, RCOH	10-13
0	

APPROXIMATE CARBON-13 CHEMICAL SHIFTS

SHIF 15	
Type of Carbon	Chemical Shift (δ, ppm)
1° Alkyl, RCH ₃	0-40
2° Alkyl, RCH ₂ R	10-50
3° Alkyl, R ₃ CH	15-50
Alkyl halide or amine, C-X	10-65
Alcohol or ether, -C-O	50-90
Alkyne, , -C ≡	60-90
Alkene, -C=	100-170
Aryl,	100-170
Nitriles, -C≡N	120-130
O II Amides, -C-N-	150-180
	100 100
O Il Carboxylic acids , esters, - C -O-	160-185
Il Aldehydes, ketones, -C-	182-215

E1 Practice-i, q3

Empirical Formula: C₄H₅O Mass Spec: M⁺ *m/e*= 138

