CHEM 2311 E6 Practice-iii (answers *not* provided)

COPIES OF TABLES 2.7, 9.1, and 9.2 are attached You may use a calculator on this exam

Atomic Masses: H, 1.008; C, 12.01; O, 15.999

- 1. (32 points) Circle the letter on the right which corresponds to the answer to each question. There is only one correct answer for each question. Α (i) What species is formed upon bombardment of a molecule with high energy electrons in a mass В spectrometer? С D A radical anion **B.** A radical cation **C.** A radical **D.** A carbene (ii) What feature of a molecule effects the chemical shift (δ) of a signal in the ¹³C NMR spectrum? Ε F E. the number of types of carbon G **F.** the number of a particular type of carbon н **G.** the number of neighboring carbons **H.** the electronic environment of the carbon L (iii) Predict the splitting pattern you would observe for the proton on C3 of J 2-bromo-3-methylbutane in an ¹H NMR spectrum? Κ L I. singlet J. quartet K. septet L. octet (iv) How many signals would 1,3-dimethylbenzene (m-xylene) give in the ¹³C NMR spectrum? Μ Ν **M.** 4 **N.** 5 **O.** 6 **P.**8 Ο Ρ (v) What is the relative area of the six peaks in a sextet in an ${}^{1}HNMR$ spectrum? **Q.** 1:2:3:3:2:1 **R.** 1:3:6:6:3:1 **S.** 1:5:10:10:5:1 T. 1:6:15:15:6:1 Q R S (vi) Which of the following does not give a ^{13}C NMR spectrum consisting of 2 peaks? т **U.** propane V. 2-methylbutane W. 2,2-dimethylpropane X. 2,3-dimethylbutane U v (vii) Which of the following is a valid molecular formula? W Х **Y.** C_8H_{22} Z. C₆H₁₃Br₂FN **BB.** C₉H₁₈N **AA.** C₇H₁₁N₃ Υ (viii) In IR spectroscopy which of the following bonds stretches (vibrates) at the lowest frequency? Ζ AA **CC.** C-O DD. C-H EE. C=C FF. C=O BB
 - CC DD EE
 - FF

2. (24 points)

(i) (4 points each) Provide a single molecular structure consistent with the following data. The NMR data is complete. The IR spectra have a number of peaks, only the most relevant are provided.

Compound **B**: C₈H₉Br ¹H NMR: δ 2.0 (doublet, 3H) δ 5.2 (quartet, 1H) δ 7.3-7.4 (multiplet, 5H)

Compound **C**: C_6H_6CIN ¹H NMR: δ 3.6 (singlet, 2H) δ 6.6 (doublet, 2H) δ 7.1 (doublet, 2H) IR: 3520 (broad), 3400 (broad), 3050 cm⁻¹ (and others)

Compound **D**: C_5H_8O ¹³C NMR: δ 22, 38, 220 IR: 1742 cm⁻¹ (and others)

(ii) (4 points each) Compound E gives a combustion analysis of C 69.59%; H 7.29%

(a) What is the *empirical formula* of **E**?

(b) What is the value of SODAR for the smallest possible molecular formula of E? _____

3. (19 points) Refer to the data provided on the next page. *NOTE: Parts (a)-(i) are worth TWO POINTS each, (j) is worth ONE POINT. Each part is graded <u>independently</u>, without reference to other answers*

Analysis of Combustion Analysis/Mass Spectrum What is the molecular formula? What is the value of SODAR? Analysis of IR spectrum (in conjunction with formula) Which of the following are present? (circle all that are present) O-H C-O C=O What type of functional group is present? Analysis of the ¹³C NMR spectrum (in conjunction with IR and SODAR) How many types of carbon are there in the molecule? How many types of aromatic carbons are there in the molecule? Is there a peak arising from a carbonyl in the ¹³C NMR spectrum? (circle one) Yes No How many types of sp^3 carbons are there? Analysis of ¹H NMR spectrum How many types of proton are there in the molecule? What is the ratio of the number of each type of proton, proceeding from left to right across the spectrum? (*i.e.*, 6:3:2:1) Which of the following are present? (circle all that are present) Et iPr vinylic H (i.e. an alkene) tBu aromatic H How many aromatic hydrogens are there? How many substituents are there on the benzene ring?_____ Describe the multiplets (*i.e.*, s, d, t, q) at: δ 1.7 ppm _____, and δ 2.9 ppm Putting it all together Suggest a single structure for the molecule which is consistent with all of the data presented.

INFRARED ABSORPTION VALUES

Group	JIN VALU Freauencv R	ange (cm^{-1})	Intensity
A Alkvl	requeitey 1	unge (em)	1
C-H (stretching)		2583-2962	(m-s)
Isopropyl -CH(CH ₂) ₂		1380-1385	(11 5)
isopropyi, cii(cii3)2	and	1365-1370	(3)
tert-butyl_C(CH.).	and	1385-1395	(3) (m)
<i>ien-</i> outyl, -C(CII3)3	and	1365-1375	(iii)
	and	~1303	(8)
D. Alleaned			
B. Alkenyl		2010 2005	()
C-H (stretching)		3010-3095	(m)
C=C (stretching		1620-1680	(v)
$R-CH=CH_2$		985-1000	(S)
	and	d 905-920	(S)
$R_2C=CH_2$		880-900	(S)
cis-RCH=CHR		675-730	(s)
trans-RCH=CHR		960-975	(s)
C. Alkynyl			
≡C-H (stretching)		~3300	(s)
$C \equiv C$ (stretching)		2100-2260	(v)
D. Aromatic			
Ar-H (stretching)		~3030	(v)
Aromatic substitution type			(.)
(C-H out-of-plane bendings)			
Monosubstituted		690-710	(verv s)
Wonosubstituted	and	1 730-770	(very s)
o Disubstituted	and	735 770	(very 3)
<i>o</i> -Disubstituted		690 725	(5)
<i>m</i> -disubstituted		1 750 910	(s)
the trade of t	and	1 /50-810	(strong s)
p-disubstituted		800-860	(strong s)
	1		
E. Alcohols, Phenols, and Carbox	ylic Acids		
O-H (stretching)			<i>(</i> 1)
Alcohols, phenols (dilute soluti	on)	3590-3650	(sharp, v)
Alcohols, phenols (hydrogen be	onded)	3200-3550	(broad, v)
Carboxylic acids (hydrogen bo	nded)	2500-3000	(broad, v)
	. ~		
F. Aldehydes, Ketones, Esters and	l Carboxylic	Acids	
C=O (stretching)		1630-1780	(s)
Aldehydes		1690-1740	(s)
Ketones		1680-1750	(s)
Esters		1735-1750	(s)
Carboxylic Acids		1710-1780	(s)
Amides		1630-1690	(s)
G. Amines			
N-H		2200-2500	(m)
H. Nitriles			
C≡N		2220-2260	(m)
			()

s = strong; m = medium, w = weak, v = variable

APPROXIMATE PROTON CHEMICAL SHIFTS

Type of Proton	Chemical Shift (δ , ppm)
1° Alkyl, RCH ₃	0.8-1.0
2° Alkyl, RCH ₂ R	1.2-1.4
3° Alkyl, R ₃ C H	1.4-1.7
Allyllic, $R_2C=C-CH_3$	1.6-1.9
Ketone RCCH	2 1-2 6
	2.1-2.0
0	
Benzylic, $ArCH_3$	2.2-2.5
Acetylenic, RC=CH	2.5-3.1
Alkyl iodide, RCH ₂ I	3.1-3.3
Ether, $ROCH_2R$	3.3-3.9
Alcohol, $HOCH_2R$	3.3-4.0
Alkyl bromide, RCH ₂ Br	3.4-3.6
Alkyl chloride, RCH ₂ Cl	3.6-3.8
Ainylic, $R_2C=CH_2$	4.6-5.0
Vinylic, $R_2C=CH$	5.2-5.7
R I	
Aromatic, Ar-H	6.0-9.5
Aldehyde, RCH	9.5-10.5
0 II	
Alcohol hydroxyl, ROH	0.5-6.0
Amino, RNH_2	1.0-5.0
Phenolic, ArOH	4.5-7.7
Carboxylic, RCOH	10-13
U	

APPROXIMATE CARBON-13 CHEMICAL SHIFTS

Type of Carbon	Chemical Shift (δ , ppm)
1° Alkyl, RCH ₃	0-40
2° Alkyl, RCH ₂ R	10-50
3° Alkyl, R ₃ CH	15-50
Alkyl halide or amine, C-X	10-65
Alcohol or ether, -C-O	50-90
Alkyne, , -C ≡	60-90
Alkene, -C=	100-170
Aryl,	100-170
Nitriles, -C ≡N	120-130
Q	
Amides, -C-N-	150-180
0	
Carboxylic acids, esters, -C-O-	160-185
0 11	
Aldehydes, ketones, -C-	182-215

E5 Practice-ii, q3

