TOPIC 1. STRUCTURE AND BONDING

OBJECTIVES

- 1. Introduction to organic chemistry and review of terms
- 1. Describe distribution of electrons in organic molecules (atomic electronic configurations, Lewis structures, resonance)
- 2. Describe bonding C-C and C-H bonds in organic molecules (hybridization, overlap of atomic orbitals).
- 3. Describe molecular geometry.

ORGANIC CHEMISTRY: YESTERDAY, TODAY AND TOMORROW

Yesterday

Pre-1820: "Vitalism" - belief that "natural compounds" possessed special properties, could not be made by man

1828: Wöhler: preparation of urea (organic) from ammonium cyanate (inorganic)

 $NH_4^+OCN^- \xrightarrow{heat} CH_4N_2O$

nylon, polyester, PVC, polyethylene, polypropylene) 1928: Discovery of penicillin (1954: Celphalosporin) 1948: α-helix of protein structure determined

(1952: Determination of double helix structure of DNA) 1950s: Oral contraceptives

Today

Major commodities		Major US commodity Producers		Major Pharmaceuticals
(annual US production)		(Annual Sales)		Prilosec
	billion lb		billion\$	(Astra Pharm Inc., acid reflux)
Ethylene	55	Dow Dow	28	Lipitor (Parke-Davis, high cholesterol)
Propylene	32	DuPont	27	Propecia
Dichloroethane	22	BASF	25 18	(antibaldness)
Urea	15	Bayer 💮 Bayer Total	18	AZT
Ethybenzene	13	ExxonMobil EXON	16	(Burroughs Wellcome, HIV)
Styrene	12	Shell Oil	15	Prozac (Fluoxetine)
Ethylene oxide	9	BP Amoco	13	(Antidepresent. Lillv)
p-Xylene	8	Degussa	11	Viagra 👧 👝
Cumene	8	Akzo Nobel ICI Americas	9 9	(Pfizer)
1,3-Butadiene	4	SABIC	8	Zantac (Ranitidine)
Acrylonitrile	3	China Petroleum	8	(Antiulcer, Glaxo)
Benzene	2	Mitsui	8	Claratin
Aniline	2	General Electric	7	(Schering, allergies)
	2	Huntsman	7	Amoxicillin
Isopropanol	1	Union Carbide	6	(Antibiotic; SKB, Squibb)
o-Xylene	1	Air Products	5	Acetaminophen
2-Ethylhexanol	1			Ibuprophen

Recently

Taxol (anticancer), C60-buckyball, Organic electronic materials (LCDs)

Tomorrow

Better food: Nutrients Pesticides Fertilizers Better health: Pharmaceuticals Biomedical engineered implants/replacements Better environment: Cleaner processes

Better living....

...through responsible care and stewardship.

SOME BASIC STRUCTURAL FEATURES

Empirical Formula

- Ratio of atoms in a compound.

Molecular Formula

- Number of each atom in a molecule.

Valency

- Elements form a fixed number of bonds (H 1, O 2, N 3, C 4).

Structure

- Arrangement of atoms and bonds in a molecule.

Isomers

- Different compounds with the same molecular formula.

Constitutional isomers

- Compounds with the same formula, but with different connectivities of atoms.

A VERY GOOD PLACE TO START: ELECTRONIC CONFIGURATION OF ATOMS

Н	1s ¹	
He	1s ²	
Li	1s², 2s¹	
Ве	1s², 2s²	
В	1s², 2s²,2p¹	1s ² , 2s ² ,2p _x ¹
С	1s², 2s²,2p²	1s ² , 2s ² ,2p _x ¹ 2p _y ¹
Ν	1s², 2s²,2p³	$1s^2$, $2s^2$, $2p_x^{-1}2p_y^{-1}2p_z^{-1}$
0	1s², 2s²,2p4	$1s^2$, $2s^2$, $2p_x^2 2p_y^1 2p_z^1$
F	1s ² , 2s ² ,2p ⁵	$1s^2$, $2s^2$, $2p_x^2 2p_y^2 2p_z^1$
Ne	1s², 2s²,2p ⁶	$1s^2$, $2s^2$, $2p_x^2 2p_y^2 2p_z^2$

BONDING: LEWIS STRUCTURES AND FORMAL CHARGES

The Octet Rule

Atoms exchange or share electrons to complete the valence shell (adopt Noble gas electronic configuration)

Н							He	
Li	Be Mg	в	С	Ν	0	F	Ne	
Na	Mg	AL	Si	Р	S	CI	Ar	O III
κ	Ca					Br		
						Т		

Ionic Bonds

Atoms exchange electrons to form ions which are electrostatically attracted to one another.

 $Li + F \longrightarrow Li + F$

lonic bonds are typically formed between atoms which are highly electronegative and highly electropositive

Covalent Bonds

Atoms share valence shell electrons to form covalent bonds

 $\mathsf{C} \hspace{0.1cm}\mathsf{H} \hspace{0.1cm}\mathsf{H} \hspace{0.1cm}\mathsf{H} \hspace{0.1cm}\mathsf{H} \hspace{0.1cm} \overset{}{\mathsf{H}} \hspace{0.1cm} \overset{}{\mathsf{H}} \hspace{0.1cm}\overset{}{\mathsf{H}} \hspace{0.1$

 $\mathsf{O} \quad \mathsf{H} \quad \mathsf{H} \quad \longrightarrow \quad$

Recommendation: ALWAYS explicitly show lone pairs of electrons

"Exceptions" to the Octet "Rule"

Octet rule is the tendency to have eight valance electrons - only applies strictly to second row elements

Formal Charge

F = Z - (S/2) - U

Always show all formal charges in all structures!

Some Common Valencies

Not:

RESONANCE THEORY

e.g., Carbonate, CO_3^{2-} : A single Lewis structure does not accurately describe the structure of the carbonate dianion.

Molecules and ions that can be represented by more than one valid Lewis structure *which differ only in the position of non-bonding electrons and double bonds* exist as a hybrid of each contributing resonance structure.

Resonance structures ("contributors")

The hybrid is a combination (average) of all the contributing Lewis structures. It is more stable than the individual structures.

Problem: Which of the following are valid resonance structures?

Guidelines for Recognizing and Drawing Resonance Structures

- Individual resonance structures *do not exist* the *hybrid* does. The energy of the actual molecule is lower than what might be predicted for any of the contributing structures
- Resonance structures which possess features that impart stability contribute more to the hybrid structure. Stability is enhanced by:
 - Equivalent resonance structures contribute particular stability to the molecule
 - More bonds, stronger bonds
 - Complete valence shells (as opposed to incomplete valence shells)
 - Little (no) charge separation (separating charges costs energy!)
 - Negative charge on electronegative atoms (and visa versa)

important least important

most

Which structure in each pair is the more stable major contributor to the resonance hybrid? [Consider the factors that contribute to the stability/instability of each resonance structure]

Problem: Which of the following sets of curved arrows accurately represents resonance? [*Draw the structures implied by the movement of electrons shown by the arrows, which of the species is a valid Lewis structure?*]

QUANTUM MECHANICS, ATOMIC ORBITALS AND MOLECULAR ORBITALS

Electrons are contained in atomic orbitals

Atomic orbitals overlap to form molecular orbitals

Carbon:

Filling Orbitals

maximum of two e⁻ per orbital *Aufbau Principle:* e⁻ fill lower energy orbitals *Pauli Principle:* e⁻ in same orbitals have different spins *Hund's rule:* degenerate orbitals are filled equally

METHANE AND ETHANE: sp³ HYBRIDIZATION

e.g., methane, CH₄

ethane, $C_2H_6\!\!:$ gas (bp= -88 °C). Used in manufacture of C2 derivatives; Minor constituent of natural gas.

ethene (ethylene), C_2H_4 : gas (bp= -102 °C). Monomer for preparation of polyethylene, used for synthesis of ethylene oxide.

Alkenes are thermally stable and do not undergo rotation around the C=C bond.

Constitutional and Geometric Isomers of Alkenes

Geometric isomers have the same connectivity of atoms, but different spatial arrangements.

e.g., ethyne (acetylene)

ethyne (acetylene), C_2H_2 : gas (bp= -81 °C). Used in oxy-acetylene welding torches, for manufacturing of acetic acid.

Comparing C-H Bond Lengths in Alkanes, Alkenes and Alkynes

VALENCE SHELL ELECTRON PAIR REPULSION THEORY

VSEPR Theory – use to predict shape of molecules Pairs of valence e^- (in bonds and lone pairs) repel each other

H-O-H

*sp*³ carbon atoms are tetrahedral: Practice drawing tetrahedra!

REPRESENTING ORGANIC MOLECULES IN 2D AND 3D

e.g., Propane (C₃H₈)

н н н н-с-с-с--н н н

dash structure condensed structure bond-line structure 3-D structure

line = bond bond end, angles, nodes = carbon Do not show H on C; do show H on other atoms Assume C is tetravalent unless charges/electrons are shown

Remember you must *always show heteroatoms and hydrogen atoms on heteroatoms.* It is recommended that you always show lone pairs, however sometimes lone pairs are not shown. *Even if lone pairs are not shown, you need to be able to identify when they are present (consider octet rule and presence of charges)*

condensed structure bond-line structure *Problem.* What is the molecular formula of each of the following compounds shown as bond-line structures?

Constitutional Isomers

Given the common valencies of atoms (C=4, H=1), there might be a number of possible arrangements. These different structures are called *constitutional isomers*. Draw all the constitutional isomers with molecular formula C_4H_{10} .

BOND STRENGTHS

Orbital Energy Diagrams $E \begin{bmatrix} atomic orbital \\ Hs; or sp, sp^2, sp^3, p \end{bmatrix} = atomic orbital \\ Hs; or sp, sp^2, sp^3, p \end{bmatrix}$

Strong bonds are formed between atoms with similar size. Long bonds are often weak.

Representative Bond Lengths and Strengths

	bond length	bond st	rength
	Á	kcal/mol	kJ/mol
H-H	0.74	104	435
H-F	0.92	136	571
H-CI	1.27	103	432
H-Br	1.41	87	366
H-I	1.61	71	289
H-O	0.97	110	460
H-C	1.10	99	414
C-C	1.55	88	368
C=C	1.33	152	636
C≡C	1.20	200	837
C-0	1.43	80	355
C=O	1.21	191	799
C-F	1.38	110	461
C-CI	1.77	79	330
C-Br	1.95	67	280
C-I	2.14	57	240

1 Å = 10⁻¹⁰ m = 100 pm 1 kcal = 4.18 kJ

Structure \Rightarrow Function

Physical Properties of C₃H₈O

isopropyl alcohol	ethyl methyl ether
(CH ₃) ₂ CHOH	CH ₃ CH ₂ OCH ₃
water-miscible	water-insoluble
bp = 82 °C	bp = 8 °C
Reactivity of $C_6 H_{12}$	
1-hexene	cyclohexane
Br ₂	Br ₂

C₆H₁₃Br

You know a lot about organic structures!

Problem. Norethindrone, is a steroidal oral contraceptive. Identify the hybridization and geometry of each atom, and the length and overlap of atomic orbitals for each bond.

no reaction

What is the molecular weight?

SUMMARY: MOLECULAR STRUCTURE CONCEPTS, MODELS, RULES AND THEORIES

Concept	Prediction
Valency/ Octet rule	Presence of lone pairs Formal charges
Bonding	Covalent bonds between atoms of similar electronegativity
	lonic bonds between atoms of different electronegativity
VSEPR	Molecular geometry
Hybridization	Molecular geometry
Resonance	Charge distribution

TOPIC 1 ON EXAM 1

Types of Questions

- Identify formal charges, geometry (bond lengths, angles), hybridization.
- Draw and recognize resonance structures, constitutional isomers, atomic and molecular orbitals.

Preparing for Exam 1

- Get up-to-date NOW!
- Work as many problems as possible. Do the problems first, then consult the solutions manual.
- Work in groups, discuss chemistry, teach and test each other.