TOPIC 2. ORGANIC COMPOUNDS

OBJECTIVES

- 1. Describe the structure of N, O and halogen containing functional groups: formal charges, hybridization, VSEPR theory, polarity, resonance.
- 2. Develop relationships between structure and physical properties (b.p., solubility).

HYDROCARBONS

Molecules containing only C, H

BRANCHED ALKANES, CLASSIFICATION OF CARBON ATOMS, ALKYL GROUPS

Classification of carbon atoms R = carbon, X ≠ C

Alkane	Alkyl group		
CH₄ methane	X- CH ₃	methyl, Me	
CH ₃ CH ₃ ethane	$X-CH_2CH_3$	ethyl, Et	
CH ₃ CH ₂ CH ₃ propane	$X-CH_2CH_2CH_3$	propyl, Pr, <i>n</i> -Pr, 1-propyl	
	X— CH(CH ₃) ₂	isopropyl, <i>i</i> -Pr, 2-propyl	
CH ₃ CH ₂ CH ₂ CH ₃ butane	$X-CH_2CH_2CH_2CH_3$	butyl, Bu, 1-butyl	
ĥ	Г СН₃СНСН₂СН₃ ⊬	sec-butyl, s-Bu, 2-butyl	
H ₃ C CH ₃ CH ₃		isobutyl, i-Bu	
isobutane	H ₃ C CH ₃	<i>tert</i> -butyl, t-Bu	
	Ung		

phenyl, Ph, Φ

benzyl, Bn

vinyl

FUNCTIONAL GROUPS

Carbon-Halogen Bonds

R—Hal				
<u>Halogen</u>	C-Hal bond length / Å	C-Hal bond dipole / D	Bond energy kcal/mol	
Fluorine	1.38	1.51	116	
Chlorine	1.77	1.56	79	
Bromine	1.94	1.48	66	
lodine	2.21	1.29	52	

We will see later that in general the reactivity of alkyl halides increases in the order:

alkyl fluorides << alkyl chlorides < alkyl bromides < alkyl iodides

Why? A large part of the answer is bond strength

Alcohols

Hybridization of Oxygen in Alcohols

Ethers

Problem: Using the concepts from topic 1....

- What is the geometry around the nitrogen of an amine

- What is the hybridization of the nitrogen of an amine

- What is the hybridization of the orbital containing the lone pairs of electrons on the nitrogen atom of amines?

Carboxylic Acids and Derivatives (Esters and Amides)

Validating resonance theory

The above resonance structures *predict* partial double bond character for the carbonyl–nitrogen bond.

Experimental studies show

- 1. The four atoms attached to the carbonyl carbon and the nitrogen atoms are close to being planar
- 2. There is very slow rotation about the carbonyl carbon-nitrogen bond

Nitriles (cyanides)

R-C=N:

laetrile - amygdalin (cyanogen sugar in bitter almonds, peach and apricot seeds) Methyl cyanoacrylate (monomer in Superglue)

INTERMOLECULAR FORCES AND PHYSICAL PROPERTIES

Intermolecular Forces: Hydrogen Bonding; Dipole-Dipole Interactions; London Dispersion Forces (Van Der Waals Forces)

1. Hydrogen Bonding

Electrostatic attraction between lone pairs (e.g., on N, O, S, F, Cl, ...) and a hydrogen atom bonded to an electronegative atom (e.g., on N, O, S, F, Cl,...)

- Hydrogen is $\delta\text{+}$ because of dipole

- Heteroatom has lone $\ensuremath{\mathsf{pair}}(s)$ of electrons

H—X: H—X:

Physical Properties

Boiling Points

CH₃CH₂CH₂CH₃

butane, mw = 58 bp = -1°C propylamine, mw = 59 bp = 48 °C

CH₃CH₂CH₂NH₂

1-propanol, mw = 60 bp = 97 °C

CH₃CH₂CH₂OH

 $CH_3CH_2CH_2F$ 1-fluoropropane, mw = 62 bp = -3 °C

 $(CH_3)_3N$ trimethylamine, mw = 59 bp = 3 °C

59 ethyl methyl ether, mw = 60 bp = 11 °C

> CH_3CO_2H acetic acid. mw =

acetic acid, mw = 62 bp = 118 °C

These differences in boiling point allow for the separation of compounds by distillation

2. Dipole-Dipole Interactions

Electrostatic attraction between permanent dipoles

3. Van der Waals (London) Forces Electrostatic attraction between momentary dipoles and induced dipoles

Intermolecular forces determine a compound's physical properties.

Solubility

"Like dissolves like"

Polar solvents dissolve polar molecules and salts. Hydrogen bonding solvents dissolve hydrogen-bonding solutes.

- Soluble with water:

Salts: NaCl, NaOH

Alcohols: Methanol, CH₃OH, up to propanol, CH₃CH₂CH₂OH

Acids: Acetic acid, CH₃COOH, up to butanoic acid, CH₃CH₂CH₂COOH

- Insoluble in water

Hydrocarbons: Alkanes, alkenes

Relatively non-polar functional molecules: Alkyl halides, ethers, etc

Differences in solubility allows for the separation of organic compounds by recrystallization and extraction (see later – Acids and Bases)

Polarity

TOPIC 2

Types of Questions

- Describe various types of alkanes, alkyl groups, and carbons (primary, secondary, tertiary).
- Identify functional groups, geometry (bond lengths, angles), hybridization of atoms.
- Identify different types of intermolecular forces between molecules based on structure. Describe how these forces relate to physical properties of the compound