## **TOPIC 3. ALKANES**

## **OBJECTIVES**

- 1. Develop rules for systematic nomenclature of alkanes alkenes and alkynes
- 2. Describe the geometry of hydrocarbons
- 3. Describe the rotation around C-C single bonds (conformation)
- 4. Describe the geometry of cyclic alkanes
- 5. Describe reactions involving alkanes.

## PHYSICAL PROPERTIES OF ALKANES

C1-C4: gas C5-C15: liquid >C16: solid large n: polyethylene

Branching usually decreases m.p.: • branches impede crystal packing. (Highly symmetric molecules have higher m.p. e.g.,  $C(CH_3)_4$ , m.p.=-16 °C;  $CH_3(CH_2)_3CH_3$ , m.p.=-130 °C) Branching decreases b.p.: • More compact structure gives less surface area: weaker van der Waals interactions Non-polar: immiscible with water Less dense than water Dissolve other non-polar organic molecules Flammable! Chemically inert Uses: fuels, solvents,waxes PE-HD

## SYSTEMATIC IUPAC NOMENCLATURE OF ALKANES

#### Linear (Unbranched) Alkanes

| $CH_4$                                                          | C1 | methane | 11             |
|-----------------------------------------------------------------|----|---------|----------------|
| CH <sub>3</sub> CH <sub>3</sub>                                 | 2  | ethane  | 12             |
| $CH_3CH_2CH_3$                                                  | 3  | propane | 13             |
| $CH_3(CH_2)_2CH_3$                                              | 4  | butane  | 14             |
| $CH_3(CH_2)_3CH_3$                                              | 5  | pentane | 15 pentadecane |
| $CH_3(CH_2)_4CH_3$                                              | 6  |         | 16 hexadecane  |
| $CH_3(CH_2)_5CH_3$                                              | 7  |         | 17 heptadecane |
| CH <sub>3</sub> (CH <sub>2</sub> ) <sub>6</sub> CH <sub>3</sub> | 8  |         | 18 octadecane  |
| CH <sub>3</sub> (CH <sub>2</sub> ) <sub>7</sub> CH <sub>3</sub> | 9  |         | 19 nondecane   |
| $CH_3(CH_2)_8CH_3$                                              | 10 |         | 20 eicosane    |

#### **Branched alkanes**

e.g.,

find longest continuous chain of carbons base name = alkane

List substituents as prefixes in alphabetical order (ignoring di, tri, sec, tert, but do not ignore "iso")

octane



Number longest continuous chain from the end that places a substituent at the lowest possible number

ethyl dimethyloctane



Problem: Name the following.



## NAMING OTHER COMPOUNDS



e.g.,





*Problem.* Name the following bicyclic compounds.







#### Naming Alkenes (and Alkynes)

e.g.,

Find longest continuous chain of carbons which contains the C=C (or C=C): base name = alkene (alkyne)

Number longest continuous chain of carbons to assign an  $sp^2$  (*sp*) carbon to as low a number as possible: #-alkene (#-alkyne)

#### heptene

Identify substituents and position of substituents. Substituents are listed alphabetically

3-heptene

#### **Cyclic Alkenes**

Define the *sp*<sup>2</sup> carbons of the alkene as C-1 and C-2 *such that the first encountered substituent occupies the lowest possible number (this is sometimes called the first point of difference rule).* 



What about compounds with alcohol and double (or triple) bonds? Consider them alcohols first, and name them as (substituted alkanols)



## **MOLECULAR FORMULA**

 $\begin{array}{ll} \mbox{Alkanes}: C_n H_{2n+2} \\ \mbox{Alkenes}: C_n H_{2n} \\ \mbox{Alkynes}: C_n H_{2n-2} \\ \end{array} \qquad \begin{array}{ll} \mbox{Cyclic alkanes}: C_n H_{2n-2} \\ \mbox{Dialkenes}: C_n H_{2n-2} \\ \end{array}$ 

For each ring or pi-bond in a molecule there are two fewer hydrogen atoms than expected for a non-cyclic alkane, so:

Sum of pi bonds and/or rings (SODAR)= (2#C + 2 - #H)/2

Note: SODAR may also be referred to as "sites of unsaturation" or "index of hydrogen deficiency"

*Problems:* How many pi bonds or rings are there in  $C_9H_{14}$ ?

C<sub>10</sub>H<sub>17</sub>?

The same equation is true in the presence of divalent oxygen or sulfur atoms:

For C,H,O,S: SODAR = (2#C + 2 - #H)/2

In the presence of halogens (monovalent) or nitrogen (trivalent):

For C,H,O,N,S, Hal: SODAR = (2#C + 2- #H - #Hal + #N) / 2

(each Hal replaces a H; each N adds an extra H; and S,O have no effect on the calculation)

*Problem:* Determine the value of SODAR for compounds with the following molecular formulas.

SODAR

 $C_6H_6$ 

CH<sub>3</sub>Br

 $CH_5N$ 

 $C_3H_8N$ 

#### Differentiating alkenes and cycloalkanes

Catalytic hydrogenation



Problem. Compound **A**,  $C_4H_6$ , undergoes hydrogenation to afford  $C_4H_{10}$ . (a) How many rings are present in **A**?

- (b) How many pi bonds?
- (c) Draw all of the possible structures of A.

## **CONFORMATIONAL ANALYSIS: ROTATION AROUND C-C SINGLE BONDS**

Rotation around C-C single bonds leads to formation of different conformers. The energy required to interconvert conformers is small: Conformers can rarely be isolated at room temperature.





The eclipsing conformation of ethane is destabilized by torsional strain.



The eclipsing conformations of butane are further destabilized by steric strain







## RELATIVE STABILITY OF CYCLOALKANES

#### Ring strain: Heat of combustion per methylene unit in cycloalkane



## CONFORMATIONAL ANALYSIS OF SUBSTITUTED CYCLOHEXANES

#### The Shape of Cyclohexane



#### cis and trans Stereoisomers



Problem: Draw chair conformations of the following



## Cyclohexane Ring Inversion ("Ring Flip")



# Conformational Preferences of Substituted Cyclohexanes



# Conformational Preferences of Disubstituted Cyclohexanes:

1,2-Dimethylcyclohexanes



1,3-Dimethylcyclohexanes



#### Conformational Preferences of Disubstituted Cyclohexanes Bearing Different Substituent



Larger substituents have a stronger preference for the equatorial position

## FREE-RADICAL HALOGENATION OF ALKANES

#### **Overall Reaction**

Alkane + Halogen → Alkyl Halide + Hydrogen Halide



Bromination is more selective than chlorination.

#### Mechanism

Step 1: Initiation - generation of radicals







Step 3: Termination - consumption of radicals



## Regioselectivity



Β̈́r

Radical bromination of alkanes is only useful when replacing a hydrogen on a 3° carbon. Otherwise the reaction is unselective... *e.g.*,

$$\begin{array}{c} & & Br_2 \\ & & hv \end{array}$$

... or when there is only one possible monobrominated product.

$$\frac{Br_2}{hv}$$

e.g.,

### **Origin of Regioselectivity**

Bond Dissociation Energies (R-H  $\rightarrow$  R + H)

|        | CH <sub>3</sub> —H | CH <sub>3</sub> CH <sub>2</sub> —H | (CH <sub>3</sub> ) <sub>2</sub> CHH | (CH <sub>3</sub> ) <sub>3</sub> C—H |
|--------|--------------------|------------------------------------|-------------------------------------|-------------------------------------|
| kJ/mol | 435                | 410                                | 395                                 | 381                                 |

Radical (R·) stability

## SYNTHESES OF ALKANES

#### Hydrogenation of Alkenes and Alkynes



$$-C = C - \frac{H_2}{Pt \text{ or } Pd}$$

Hydrogenation is stereospecific

$$\begin{array}{c} \begin{array}{c} CH_3 \\ H_2 \\ \hline \\ CH_3 \end{array} \xrightarrow{H_2} \end{array}$$

### **TOPIC 3**

#### **Types of Questions**

- Describe structure and bonding in alkanes, alkenes, alkynes and cycloalkenes.
- Provide systematic names for hydrocarbons
- Analyze conformational preferences of alkanes and substituted cyclohexanes.
- Describe reactions of alkenes.