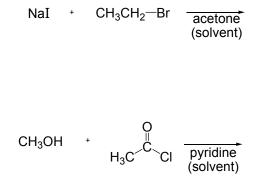
TOPIC 5. ORGANIC REACTIONS: ACIDS AND BASES

OBJECTIVES

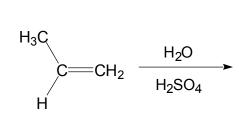
- 1. Classify types of reaction: -Addition, Substitution, Elimination, Rearrangement
- 2. Define the concept of "Mechanism"
- 3. Discuss the thermodynamics (equilibrium) and kinetics (rate) of organic reactions
- 4. Describe acid-base reactions
- 5. Develop relationships between structure and acidity/basicity
- 6. Take a first look at acid-promoted reactions

CLASSIFYING REACTIONS

Reactions are conveniently classified as substitutions, additions, eliminations and rearrangements. These terms describe the *overall* process, simply comparing the structure of starting materials and products. They do not indicate anything about the *pathway* ("mechanism") by which the reaction proceeds.

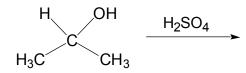

Substitutions

Additions

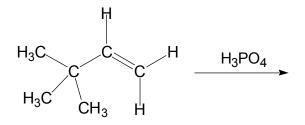

Eliminations

Rearrangements (often in combination with another type of reaction)

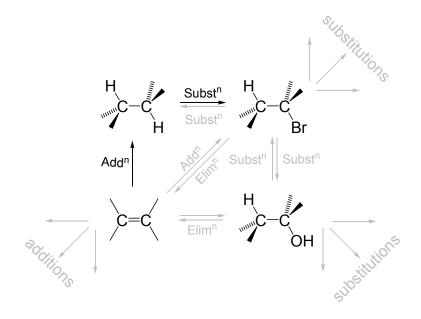
Substitution

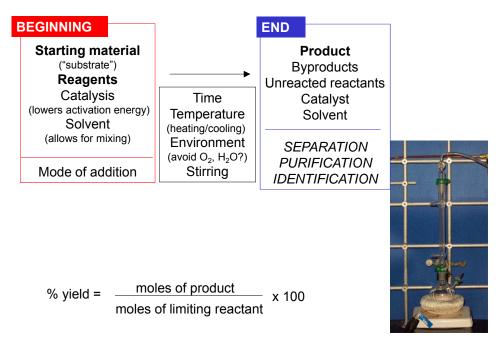


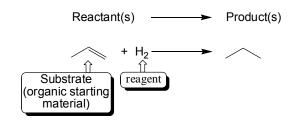
Addition

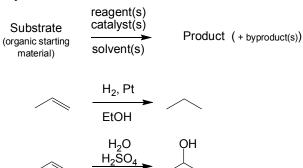


$$\bigcup_{O} \xrightarrow{H_2O} \xrightarrow{H_2SO_4}$$


Elimination


Rearrangement


A Preview of Reactivity


Practical Aspects of Running a Reaction

Representations of reactions

...more commonly written as....

WHAT IS A MECHANISM?

A mechanism is a *proposal* for a step-by-step pathway by which a reaction proceeds. Each step involves bond making and/or breaking. The mechanism takes into account all currently available evidence (kinetics, formation of byproducts, effect of structure on reactivity). Any new data collected must be consistent with the proposed mechanism, or the mechanism itself must be modified to account for the new finding.

An understanding of common mechanistic steps can be applied to new combinations of reagents to *predict* the outcome of a new reaction. As such, development of an understanding of mechanisms will save you from memorizing a huge amount of material.

While you must develop a familiarity with reactions, do not try to pass this course by just memorizing the outcome of reactions!

Electrophiles and Nucleophiles

Nucleophile Electron-rich, "nucleus-loving" species

Electrophile Electron-deficient, "electron-loving" species

CURVED ARROWS

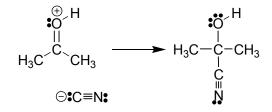
examples of 2e⁻ processes

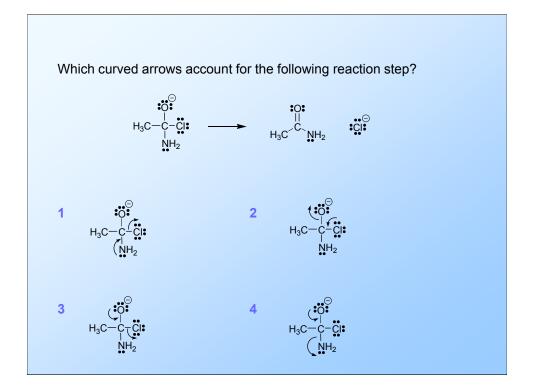
A-B ... Nu E⁺ A=B H⁺

Polarity and Heterolytic Bond Cleavage

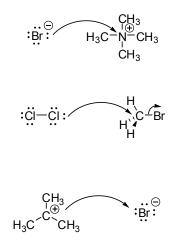
 $(CH_3)_3C$ -Br \longrightarrow $(CH_3)_3C$ Br

 H_3C —Li \longrightarrow C H_3 Li

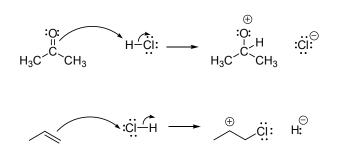

Problem: Provide curved arrows to account for the changes in bonding in the following reaction step.



Problem 3.31(d). Show the curved arrows to account for the following reaction step.



Problem: Show the curved arrows to account for the following reaction step.

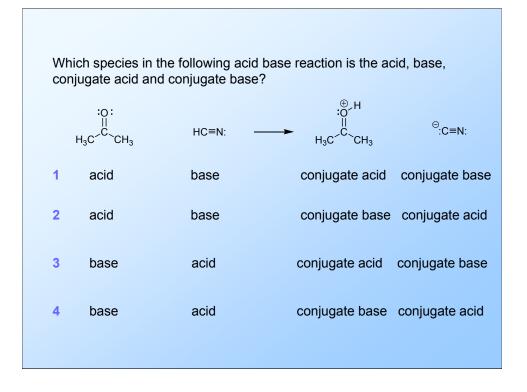


Problem: What is wrong with each of the following mechanistic steps, suggested by students in previous classes? *[consider what the curved arrow is meant to depict, or draw the products of the suggested flow of electrons and comment on why that product is not stable]*

Problem: What is wrong with each of the following mechanistic steps suggested by students in previous classes?

ACID-BASE REACTIONS

Definitions


Brønsted Acidity: ability to donate a proton Brønsted Acid: proton donor Brønsted Base: proton acceptor

H—A + :B ____→

Strong acids have weak conjugate bases e.g., Acid strength: HBr > H_2O Conjugate base strength: Br - < HO-

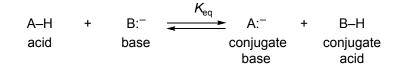
Lewis Acidity Lewis Acid: electron pair acceptor Lewis Base: electron pair donor

 $Ph_{3}P: + BF_{3} \longrightarrow$

pK_a and Acid Strength

A–H +	H_2O $\leftarrow K_{eq}$	<u>→</u> A	+ H ₂ O–H
acid	base	conjugate base	conjugate acid
$\mathcal{K}_{eq} = \frac{[A^{-}][H_{3}O^{+}]}{[HA][H_{2}O]}$	since H_2	O is solvent, [H ₂	O] = 55 M
$\mathcal{K}_{a} = \frac{[A^{\scriptscriptstyle +}][H_{3}O^{\scriptscriptstyle +}]}{[HA]}$	K	$f_{a} \uparrow$, acid streng	th↑

 $pK_a = -logK_a$

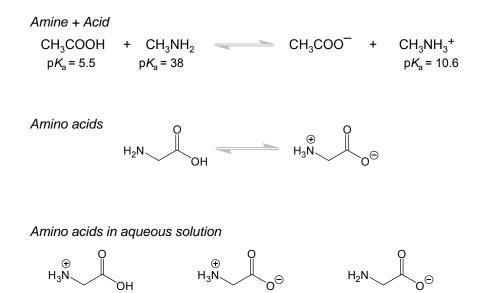

Bottom line: $\mathsf{p}\mathcal{K}_{\mathsf{a}}\downarrow$, acid strength \uparrow

THE STRENGTH OF ACIDS

p*K*_a values

	HI	-10		NH_4^+	9.2
	H_2SO_4	-9		C_6H_5OH	9.9
Þ		-9		HCO ₃ -	10.2
\succ	HCI	-7		CH ₃ NH ₃ ⁺	10.6
	(CH ₃) ₂ C=OH ⁺	-2.9	•	H ₂ O	15.7
	CH ₃ OH ₂ +	-2.5	⇔	CH ₃ CH ₂ OH	16
	H ₃ O⁺	-1.74		(CH ₃) ₃ CO H	18
	HNO ₃	-1.4		CH₃COCH₃	19.2
	CF ₃ CO ₂ H	0.18	→	HC≡CH	25
Þ	►HF	3.2		H ₂	35
	H_2CO_3	3.7	•	NH_3	38
⇔	CH ₃ CO ₂ H	4.75	→	$CH_2 = CH_2$	44
	CH ₃ COCH ₂ COC	H ₃ 9.0	►	→CH ₃ CH ₃	55

Predicting Equilibrium Constants



Equilibrium lies of side of the weaker acid and weaker base (the weaker acid and weaker base will always be on the same side)

$$HCI + NaOH \xrightarrow{K_{eq}} NaCI + H_2O \\ pK_a = -7 + H_2SO_4 \\ pK_a = -9 + PK_a = -4 + H_2O_4 \\ pK_a = -4 + H_2SO_4 \\ pK_a = -4 + H_2SO_4 - PK_a = -4 + H_2O_4 +$$

Species that can act as either an acid or as a base

CH ₃ NH ₂	+ H ₂ O	\geq CH ₃ NH ₃ ⁺ + HO ⁻
p <i>K</i> _a = 38	р <i>К</i> _а = 15.7	p <i>K</i> _a = 10.6
	versus	
CH_3NH_2	+ H ₂ O	► CH ₃ NH ⁻ + H ₃ O ⁺
p <i>K</i> _a = 38	р <i>К</i> _а = 15.7	р <i>К</i> _а = -1.74
CH₃COOH	+ H ₂ O	\doteq CH ₃ COO ⁻ + H ₃ O ⁺
р <i>К</i> _а = 5.5	p <i>K</i> _a = 15.7	р <i>К</i> _а = -1.74
	versus	
		_
СН₃СООН	+ H ₂ O	\sim CH ₃ COOH ₂ ⁺ + HO

STRUCTURE-ACIDITY RELATIONSHIPS

In order to assess the relative strengths of acids, consider the ability of the acid to donate a proton (ability to break the H-A bond) and for the conjugate base to accommodate negative charge. Stronger acids have weaker conjugate bases...

A–H + B:[−] ← A:[−] + H–B

We have ways to assess the ability of ions (anions and cations) to accommodate negative charge based on:

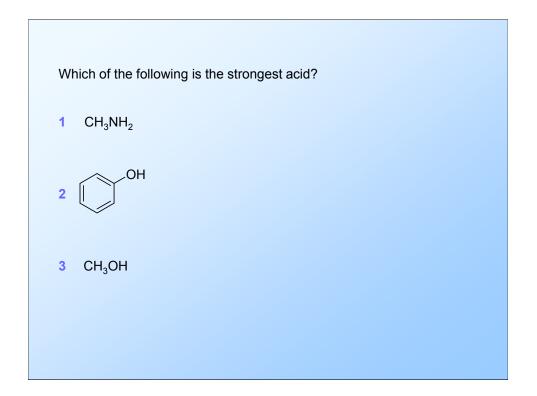
- Inductive effects (substituents donate or withdraw electron density via sigma bonds)
- Resonance effects (electron donation or withdrawal by pibonds)
- Hybridization

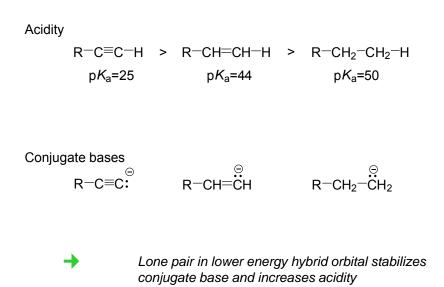
Acidity:	Across a	Row of th	e Periodi	c Table	
	$H-CH_3$	$H-NH_2$	H–OH	H–F	
p <i>K</i> a	48	38	15.7	3.2	
		conjugate	base <u>s</u>		
	CH ₃ -	NH_2^-	OH -	F -	
	Bonds stre	ngths are sir	nilar:		
	Acidity pr	imarily depe	nds on elec	tronegativity	
Acidity:	Down a C				
H–F	р <i>К</i> _ 3.2		conjugate bas F-	se	
H–CI	-7		CI-		
H–Br	-9		Br-		
H–I	-10		-		
		gth decreas marily deper		ally from H-F to H-I strength.	:

The Effect of Resonance

 $\begin{array}{l} & \mbox{${\rm p}${\it K}_{\rm a}$} \\ {\rm CH}_3 {\rm CH}_2 {\rm OH} & 16 \\ {\rm CH}_3 {\rm CO}_2 {\rm H} & 4.75 \end{array}$

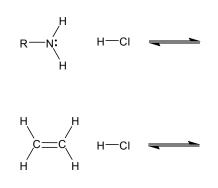
conjugate base $CH_3CH_2O^ CH_3CO_2^-$





Resonance stabilization of conjugate base and increases acidity

Ķ	oKa valu	les							()	
	H H-H								He	
	55				acid stre	ength 1				
	Li	Be	В	С	N	0	F		Ne	
				H-CH ₃	H-NH ₂	H-OH	H-F			
				35	38	15.7	3.2			
	Na	Mg	Al	Si	Р	S	C1	acid	Ar	
						H-SH	H-CI	id s		
						7.04	-7	l strength		
	K	Ca	Ga	Ge	As	Se	Br	ngth	Kr	
						H-SeH	H-Br	ر 		
						3.9	-9			
						Те	I		7	
						H-TeH	H-I	\checkmark	7	
						2.6	-10			



The Effect of Hybridization

ORGANIC BASES

Organic bases have either lone pairs of electrons or pi-bonding electrons

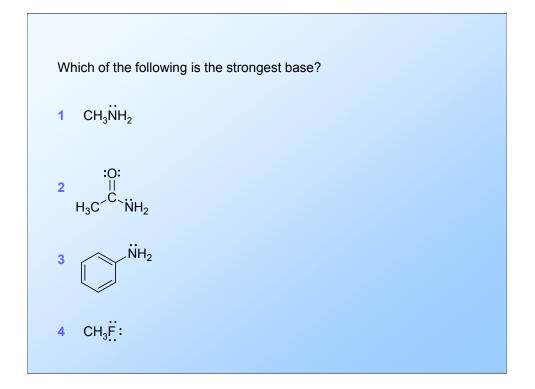
Strong bases commonly used in organic chemistry:potassium *tert*-butoxide: $K^+-OC(CH_3)_3$ sodium amide: $Na^+NH_2^-$ sodium hydride: Na^+H^-

The Effect of Structure on Basicity

Effect of charge

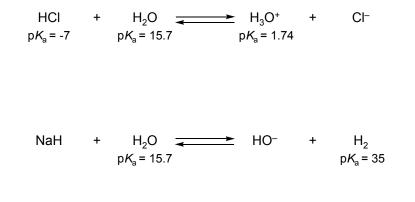
Effect of electronegativity

Effect of hybridization


 $R-CH_2-NH_2 > R-CH=NH > R-C=N$

Effect of resonance

$$CH_{3}CH_{2}-\ddot{Q}: \xrightarrow{\bigcirc} H_{3}C \xrightarrow{\bigcirc} \ddot{Q}: \xrightarrow{\bigcirc} H_{3}C \xrightarrow{\bigcirc} \ddot{Q}: \xrightarrow{\bigcirc} CH_{3}CH_{2}-\ddot{N}H_{2} \xrightarrow{>} H_{3}C \xrightarrow{\bigcirc} \ddot{N}H_{2}$$


Effect of alkyl substituents

$$R_3N > R_2NH > RNH_2 > NH_3$$

(gas phase basicity)

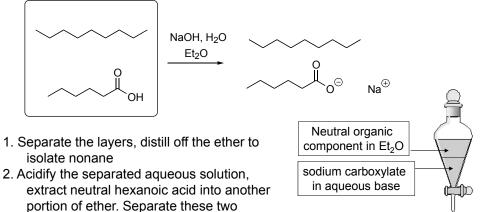
ACID-BASE REACTIONS IN AQUEOUS AND NON-AQUEOUS MEDIA

 $\rm H_3O^{\scriptscriptstyle +}$ is the strongest acid, and $\rm HO^{\scriptscriptstyle -}$ is strongest base, that can be present in water.

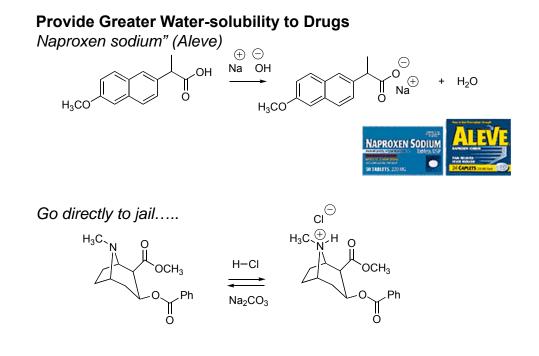
In *any* solvent, the strongest acid [base] which can be present is the *conjugate acid* [base] of the solvent. The choice of solvent for acid-base reactions is important...

			conjugate acid	conjugate base
R−C≡C−H	$NaNH_2$	hexane>	NH_3	
р <i>К</i> а=25		р <i>К</i> а=55	р <i>К</i> а=38	

R−C≡C−H	NaNH₂ H₂O →	NH_3
р <i>К</i> а=25	р <i>К</i> а=16	р <i>К</i> а=38


e.g., $CH_3OH_2^+$ is the strongest acid possible in methanol (i.e., H_2SO_4 , a stronger acid, is completely dissociated in methanol). CH_3O^- is the strongest base present in methanol (i.e., NH_2^- , a stronger base, is completely protonated by methanol).

PRACTICAL APPLICATIONS OF ACID-BASE CHEMISTRY


Separation of Neutral, Acidic and Basic Compounds

Challenge: Separate a mixture of hexanoic acid and nonane.

layers, remove ether.

Problem: Design a procedure to separate hexylamine $(C_6H_{13}NH_2)$ from nonane.

Catalysis of Reactions

Proton transfer is usually fast. Protonation (or deprotonation) of an organic starting material with an acid (or base) often catalyzes reactions which do not take place in the absence of catalyst.

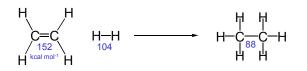
Bases *deprotonate* molecules and make them better (*i.e.*, more reactive) nucleophiles

Acids protonate molecules and make them better electrophiles

ENERGY CHANGES AND EQUILIBRIA: THERMODYNAMICS

Equilibria

Reactants (R)

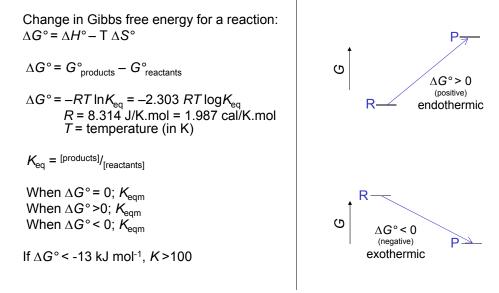

 $\stackrel{K_{eq}}{\longleftarrow} \quad \text{Products (P)} \qquad \qquad K_{eq} = \frac{[\text{products}]}{[\text{reactants}]}$

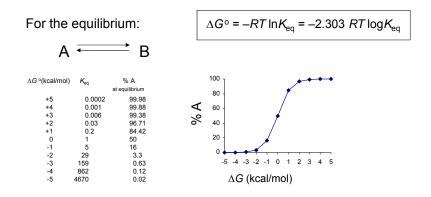
Enthalpy

 $\Delta H^{\circ} = H^{\circ}_{\text{products}} - H^{\circ}_{\text{reactants}}$ based on changes in bonding

Repre	sentative Bo	ond Lengtl	hs and s
	bond length	bond st	rength
	Á	kcal/mol	kJ/mol
H-H	0.74	104	435
H-F	0.92	136	571
H-CI	1.27	103	432
H-Br	1.41	87	366
H-I	1.61	71	289
H-O	0.97	110	460
H-C	1.10	99	414
C-C	1.55	88	368
C=C	1.33	152	636
C≡C	1.20	200	837
C-0	1.43	80	355
C=O	1.21	191	799
C-F	1.38	110	461
C-CI	1.77	79	330
C-Br	1.95	67	280
C-I	2.14	57	240
	1 Á = 10 ⁻¹⁰ m = 100 pn	n 1 kcal =	4.18 kJ

Calculating Heats of Reaction, ΔH

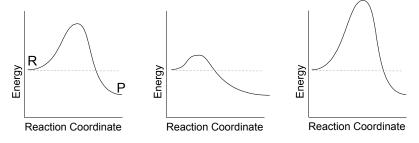

bonds broken (energy *IN*)


bonds made (energy *OUT*)

net change

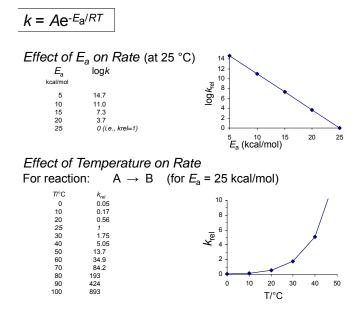
organic stuff
$$\xrightarrow{O_2}$$
 O=C=O + H₂O
C,H,O (+N,S,P,...)

Relationship Between K_{eq} and ΔG° Equilibrium constant depends on changes in enthalpy and entropy (change in disorder)

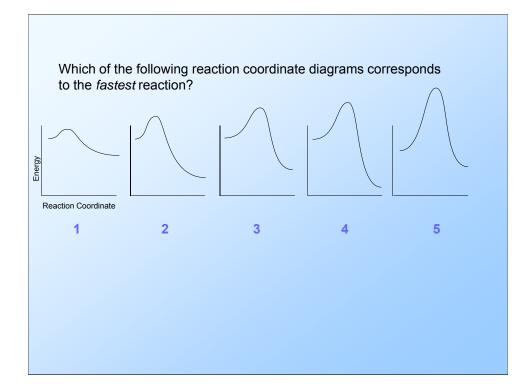

» A small change in the ΔH of a reaction has a large influence on K_{eq}

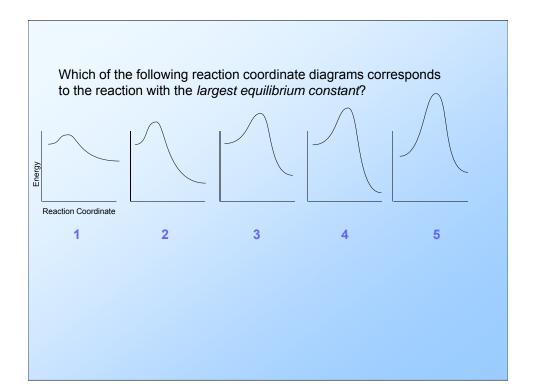
If ΔG° < -13 kJ mol⁻¹, K >100

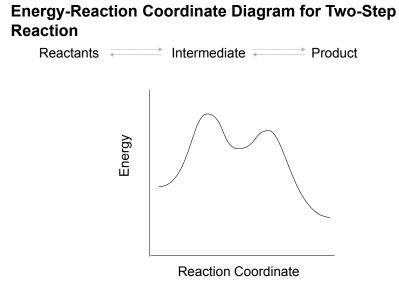
Thermodynamics tells us the extent to which a reaction CAN occur, but nothing about how FAST it will be


KINETICS

Transition State Theory: Energy-Reaction Coordinate Diagram for a One-Step Reaction


Rate constant: $k = Ae^{-E_a/RT}$


Catalysis -

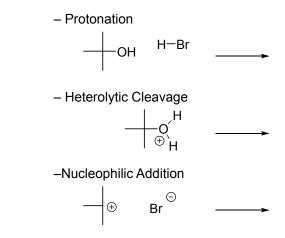


> A small change in the E_a of a reaction has a very large influence on k

) A small increase in temperature can have a large influence on k

<text>

A MULTISTEP MECHANISM IN WHICH THE FIRST STEP IS AN ACID-BASE REACTION


Substitution of tert-Butyl Alcohol

Overall Reaction

How do changes in bonding take place?

Mechanism

TOPIC 5

Key concepts

- Classify organic reactions

- Compare acid (or base) strength; understand relationship of acid or base strength as related to structure

-Show movement of electrons (nucleophiles attacking electrophiles)

-Understand thermodynamics and kinetics of organic reactions, including interpretation of reaction coordinate diagrams