TOPIC 7. ELIMINATION REACTIONS

OBJECTIVES

- 1. Describe mechanisms for elimination of a leaving group and adjacent proton to form a pi-bond.
- 2. Discuss the effect of starting material ("substrate"), leaving group, and reaction conditions on the course and outcome of a reaction.
- 3. Describe syntheses of alkenes and alkynes.
- 4. Use combinations of elimination and substitution reactions in developing two-step syntheses of value-added compounds.

ALKENES: STRUCTURE, NOMENCLATURE, AND STABILITY

Systematic Nomenclature

e.g.,

H₃C F H Br

Assign Cahn-Ingold-Prelog priority to substituents on each sp^2 carbon Highest priority on

same side: Z (zusammen=same)
opposite sides: E (entgegen=opposite)

Problem: Name the following compound

Problem: Provide IUPAC names for the following alkenes

Problem: Determine the E/Z configurations of the double bonds in each of the following alkenes

Relative Stability

Heats of Hydrogenation

Overall Stability

Number of substituents $\uparrow \Rightarrow$

Remember hyperconjugation?

Hyperconjugation accounts for the enhanced stability of cations, radicals and alkenes with higher degrees of substitution.

Radical

Carbocation

Alkene

relative stability

stability explains

Cycloalkenes

cyclopropene cyclobutene cyclopentene

cyclohexene cycloheptene

cyclooctene

cis cyclooctene

strain energies: 15 kcal/mol

trans cyclooctene 27 kcal/mol

PREVIEW OF FORMATION OF ALKENES & ALKYNES BY ELIMINATION REACTIONS

BASE-PROMOTED DEHYDROHALOGENATION OF ALKYL HALIDES

$$H_3C \xrightarrow{CH_3} H_2O$$

 $H_3C \xrightarrow{H_2O}$

but:

 $H_3C \xrightarrow[CH_3]{H_3C} Br \xrightarrow[CH_3]{NaOH}$

ELIMINATION MECHANISMS

Bimolecular Elimination (E2) Reaction

Rate = *k*[R-L][base]

Unimolecular Elimination (E1) Reaction

Rate = *k*[R-L], independent of [base]

Substitution and elimination mechanisms might be competitive pathways in a reaction mixture. The outcome of a reaction depends on:

- i. the *structure* of the substrate (steric hindrance to nucleophilic attack)
- ii. the basicity of the nucleophile

Observations and Explanations

Summary

3° substrates only undergo substitution with weakly basic nucleophiles (ROH, H_2O , RCO_2H). Stronger bases promote elimination. 1° substrates generally undergo substitution unless the base itself is sterically crowded (e.g., *t*-BuO⁻).

Substrate	e Nucleophile/Base	Mechanism
3°	<i>weak bases:</i> ROH, H ₂ O, RCO ₂ H give solvolysis	S_N^{1} (some E1 on heating)
	<i>strong bases:</i> anionic bases (HO ⁻ , RO ⁻ NH ₂ ⁻), NH ₃	E2
		No S _N 2 with 3° substrates

Summary

3° substrates only undergo substitution with weakly basic nucleophiles (ROH, H_2O , RCO_2H). Stronger bases promote elimination. 1° substrates generally undergo substitution unless the base itself is sterically crowded (e.g., *t*-BuO⁻).

Substrate Nucleophile/Base		Mechanism
2°	Less basic than HO⁻: e.g, HS⁻, RS⁻, NH₃, ⁻CN, RCO₂⁻	S _N 2
	HO⁻ and more basic: RO⁻, NH₂⁻	E2
	weak nucleophiles: ROH, H ₂ O	S_N^{1} (some E1 on heating)

Summary

3° substrates only undergo substitution with weakly basic nucleophiles (ROH, H_2O , RCO_2H). Stronger bases promote elimination. 1° substrates generally undergo substitution unless the base itself is sterically crowded (e.g., *t*-BuO⁻).

Substra	te Nucleophile/Base	Mechanism
1°	All except <i>t</i> -BuO⁻	S _N 2
	<i>t</i> -Bu-O [−] (hindered strong base)	E2
Ме	all	S _N 2

STEREOCHEMISTRY AND REGIOCHEMISTRY

Anti-Zaitsev Elimination

1. Use of bulky bases can lead to formation of "anti-Zaitsev" products

2. Formation of "anti-Zaitsev" products via the Hofmann Elimination

Orientation of E2 Eliminations

Antiperiplanar: preferred orientation for elimination

Synperiplanar: slower elimination

Explain the observation that *cis*-4-t-butyl cyclohexyl chloride undergoes elimination with a strong base 500 times faster than the *trans* isomer

DEHYDROBROMINATION AND DEBROMINATION OF VICINAL DIBROMIDES

Problem. Why does treatment of 1,2-dibromocyclohexane give 1,3-cyclohexadiene, not an alkyne?

ACID-PROMOTED DEHYDRATION OF ALCOHOLS

Acid-Promoted Elimination

Ease of dehydration:

3° > 2° >> 1°

Proceeds under relatively mild conditions 85 °C 20% aq. H₂SO₄ Requires relatively harsh conditions 180 °C conc. H₂SO₄

Ease of Formation of Carbocations: Kinetics vs. Thermodynamics

Stability of *starting material and products* of a reaction relates to *thermodynamics* (equilibrium). The relative energy of the *starting material and transition state* relates to the *rate of the reaction* (kinetics).

Mechanism: Dehydration of 2° and 3° Alcohols by E1

$$\begin{array}{ccc} CH_3 & \stackrel{\bigoplus}{H-OH_2} \\ H_3C-C-O & \longrightarrow \\ CH_3 & H \end{array}$$

Mechanism: Dehydration of 1° Alcohols by E2

$$CH_{3}CH_{2}-\ddot{\mathbf{O}}: \xrightarrow{H-OSO_{3}H}$$

Rearrangement of Carbocations During Elimination

Carbocations rearrange by hydride or alkyl shifts: $2^{\circ} \rightarrow 3^{\circ}$

A SUMMARY OF REACTIONS

SYNTHETIC STRATEGIES: TWO (OR MORE) STEP SYNTHESES

At the end of Topic 6 you were challenged to recognize one-step synthetic transformations. But not all transformations can be achieved in one step. For example, there is no method to dehydrogenate (*i.e.*, remove H_2) alkanes. So how would you bring about the following transformation?

You need to recognize that there is a single intermediate which can: 1. be made from the starting material, and 2. be transformed into the desired product

Problem: What two-step process can be used to achieve the following overall transformation?

Problem: This process can, of course, be extended to longer sequences of reactions. How could you prepare decane from bromohexane, bromoethane and ethyne?

Problem: Reaction of trans-1-bromo-2-methylcyclohexane with sodium ethoxide, a non-bulky base, results in formation of 3-methylcyclohexene, the anti-Zaitzev product. Explain.

TOPIC 7

Types of Questions

- Describe elimination reaction mechanisms
- Predict the products of elimination reactions
- Describe some simple reactions of alkenes (hydrogenation) and alkynes (acidity, hydrogenation)