TOPIC 9. CONJUGATED SYSTEMS AND AROMATICITY

OBJECTIVES

- 1. Describe the interaction of alkenes with adjacent p-orbitals.
- 2. Discuss the influence of this interaction on the chemistry of dienes (relative to alkenes)
- 3. Describe the influence of conjugation on the ease of formation of carbocations and radicals (relative to alkyl radicals) and carbocations
- 4. Contrast the structure and reactivity of alkenes and benzene
- 5. Provide a theoretical basis for aromaticity: the observation that compounds with a benzene ring are particularly stable
- 6. Recognize that antiaromatic compounds are unstable

INTRODUCTION

Alkenes undergo addition chemistry. However, alkenes also influence the reactivity of adjacent sp³ "allylic" carbons.

p-orbitals adjacent to a cation, anion, radical, or alkene influence each other and are said to be "conjugated" (*verb*: to join together, as in marriage)

Mechanism

Review of Radical Bromination of Alkanes

Bromination of Allylic and Benzylic Positions: Influence of a Double Bond

The Stability of the Allylic and Benzylic Radicals

Stability of radicals (and ease of formation)

Consequence of Resonance Stabilization of Intermediate Radicals – Formation of Regioisomers

Problem [Solomons 13.36] – What are the four isomers with formula C_5H_9Br formed by the reaction of 1-pentene with NBS?

[Solomons Problem 13.22e] - How would you carry out the following transformation? (several steps may be necessary)

Br

? Prob:13.1,22,36?

L3 Oxidation of Benzylic Positions

In laboratory

$$\begin{array}{c} & H \\ & H \\ & R \end{array} \xrightarrow{ \begin{array}{c} 1. \text{ KMnO}_4, \text{ HO}^- \\ \text{heat} \end{array}} \\ & 2. \text{ H}_3 \text{O}^+ \end{array}$$

In industry

Oxidation of p-xylene to terephthalic acid for production of polyester

ALLYLIC AND BENZYLIC CARBOCATIONS

Propenyl bromide (allyl bromide) and benzylic bromides undergoes rapid hydrolysis to form the corresponding alcohols

Previously we have seen that hydrolysis of tertiary alkyl bromides by an S_N1 mechanism via a tertiary carbocation

Mechanism

Review of Hydrolysis (S_N 1 reaction with H_2O) of tert-Butyl Halides

Hydrolysis Allylic and Benzylic Positions: Influence of a Double Bond

 \Rightarrow

The Stability of the Allylic and Benzylic Carbocations

Stability (and ease of formation):

Carbocations are also formed by the protonation of alkenes (e.g., in the addition of HBr and H_2O/H^+). The enhanced stability of allylic and benzylic cations can be used to explain the regiochemistry of addition reactions.

Consequences of the enhanced stability of allylic and benzylic cations by resonance include:

- Mild *nucleophilic substitution* reactions of allyl and benzyl halides (via more stable carbocation)
- Regiochemistry of *electrophilic addition* to alkenyl benzenes (via more stable carbocation)

A brief note about anions

Stability (ease of formation):

Problem [Solomons 13.33] – What are the **four** products with molecular formula C_4H_7CI formed upon treatment of $CH_3CH=CHCH_2OH$ with HCI?

?

? Prob: 1.4,32 ?

ALKADIENES AND POLYUNSATURATED HYDROCARBONS

Classes of dienes

L

1,5-hexadiene an isolated diene; the alkenes react independently

1,2-propadiene a cumulated diene; not common

1,3-butadiene a conjugated diene;

 \Rightarrow alkenes influence one another

H_3C-CH_3	1.54 A	//
$H_2C=CH_2$	1.34 Å	
HC≡CH	1.20 Å	·/
		1.47 Å

Resonance in Conjugated Dienes

A Molecular Orbital Description of Butadiene

The Effect of Conjugation on the Stability of Dienes

ULTRAVIOLET-VISIBLE SPECTROSCOPY

The energy required to promote electrons from π or n (non-bonding) orbitals to π^* corresponds to radiation in the ultraviolet-visible region of the electromagnetic spectrum (200-800 nm)

Conjugated materials for solar cells, field effect transistors, light emitting diodes, sensors,

ELECTROPHILIC ADDITION TO CONJUGATED DIENES

1,2- and 1,4- Addition

Kinetics versus Thermodynamics

Reaction coordinate

Natural rubber ($X=CH_3$) and Neoprene (X=CL)

? Prob:13.20,23 ?

THE DIELS-ALDER REACTION: A 1,4-CYCLOADDITION REACTION OF DIENES

1,3-Dienes Undergo Addition Reactions with Electron-poor Alkenes

Mechanism

L

Dienophile Z = -X = Y = -C = 0 -C = N -N = 0= electron withdrawing group Diene - must be able to adopt an s-cis conformation

Product ("adduct")

The Reaction is Stereospecific

Addition to Cyclic Dienes Gives Bicyclic Products....

...with predominanty endo stereochemistry

DESIGNING MULTISTEP SYNTHESIS

Diels-Alder reactions always provide a six-membered ring containing a pi-bond. To determine which diene and dienophile can be used to make a Diels-Alder aduct, push electrons around to account for a retro-Diels-Alder process.

Problem [Solomons 13.24b,f] – Which diene and dienophile are required to prepare the following compounds?

НО

Problem - Provide a synthetic route to achieve the following transformation

Problem - Provide a synthetic route to make the following molecule from starting materials with ≤5 carbon atoms.

ĊO₂H

? Prob:13.16,18,19,24,25,28,40 ?

IT'S "BENZENE!": NOT CYCLOHEXATRIENE

Benzene possesses different properties than alkenes

Structure

Sex

Rock and Roll, Disco too!

Aromatic Structures in Biology: DNA Bases

NOMENCLATURE OF BENZENE DERIVATIVES

Substituted Benzene Nomenclature

Trivial Base Names

Phenyl Substituent Nomenclature

STABILITY OF BENZENE: EXPERIMENTAL OBSERVATIONS AND THEORY

Heats of Hydrogenation as an Indication of Stability

Resonance

Combination of Atomic Orbitals

HÜCKEL'S RULE, AROMATIC IONS AND HETEROARENES

benzene

very reactive

different reactivity

cyclooctatetraene reacts like an alkene

from alkenes especially stable

isolated only at very low temperatures

unstable

(i.e., addition reactions)

stable

Huckel's rule: Compounds with $(4n+2) \pi$ electrons (n=0,1,2...) in a planar cycle of p-orbitals are particularly stable ("aromatic").

Compounds with (4n) electrons in a planar cycle of p-orbitals are particularly unstable ("anti-aromatic").

Other compounds are non-aromatic

Why is Cyclobutadiene Unstable? The Origin of Anti-Aromaticity

Cyclooctatetraene has 8 π Electrons: Why is it Stable (*i.e.*, not antiaromatic)?

Aromatic and Antiaromatic Ions

Consequences of Aromaticity on the Course of Reactions

1,3-Cyclopentadiene has a low pK_a relative to other hydrocarbons

5-Chloro-1,3-cyclopentadiene does not undergo dissociation to form a resonance stabilized carbocation

Fused Benzenes

Buckminsterfullerene

Chamazulene, 1,4-dimethyl-7-ethylazulene, extracted from chamomile flowers, is an anti-inflammatory.

Chamazulene contains the C10 bicyclic azulene ring system. With **4n+2** electrons in an uninterrupted planar cycle of p-ortibals it is an *aromatic* molecule.

Heteroarenes

pyridine

Problem [Solomons 4.22] – Why does 3-chloro-1,4-pentadiene undergo hydrolysis (S_N 1 reaction with H_2O) much more rapidly than 3-chloropentane? Why does 5-Chloro-1,3-cyclopentadiene undergo hydrolysis much more slowly?

CI

CI CI

? Prob: 14.16,17,21 ?

REVIEW: CONCEPTS

Resonance

L

1,2- versus 1,4- electrophilic additions to conjugated dienes (e.g., +Br₂, +H₂O/H⁺, +Br₂,H₂O)

Diels-Alder cycloadditions

Aromaticity

REVIEW: PROBLEMS

Problem. The following compound was prepared by a graduate student, Sahar Javanmard, as a potential therapeutic agent for treatment of drug abuse. How would you prepare this compound?

Problem [Solomons 13.31] – What are the substrates and reagents in the following scheme to prepare Heptchlor and Chlordan?

Problem [Solomons 14.21] - Cycloheptatrienone is very stable, whereas cyclopentadienone is unstable an undergoes Diel-Alder reaction with itself. Provide an explanation for these observations and provide the structure of the dimer of cyclopentadienone

Problem [Solomons Learning Group Problem 14.1] – Callistephin chloride is a red pigment found in the purple-red aster. The last step in its synthesis is shown below. What kind of process is taking place? What is the mechanism? Why is this a reasonable mechanism?

Problem [Solomons 13.19c] - How would you convert 1-butanol into 1,4-dibromo-2-butene?

TOPICS ON EXAM

Types of Questions

- Predict the product of individual reactions (know the reagents!)
- Write a detailed mechanism for reactions (understand nucleophiles, electrophiles and radicals!)

- Provide IUPAC names for compounds (including common names for substituted benzenes; review rules from CHEM 2311)

- Assess stability of reactive intermediates and compounds (*i.e.*, resonance, aromatic versus anti-aromatic, Hückel's rule)

-Do other problems in the book - they are great examples of the types of problems on the exam!

Preparing for Exam 1

- Get up-to-date NOW!
- Work as many problems as possible. Do the problems first, then consult the solutions manual
- Work in groups, discuss chemistry, teach and test each other
- Do the "Learning Group Problem" at the end of the chapter