

Acids	Bases	
Proton sources	Proton acceptors	
Loss of proton leads to conjugate base	Donate pair of electrons to a proton	
Electrophiles	Nucleophiles	
Electron defficient species	Source of electrons	
δ + end of polar bond	Neutral with lone pair	
Carbocations	Anion with lone pair	
Lewis acids	Neutral with pi-bond	

UNDERSTANDING MECHANISMS AND RATIONALIZING OBSERVATIONS

Intro-5

Nucleophilic Substitutions S:6.1-14 Prob:6.14,16,17

Nucleophilic substitutions at an sp^3 carbon may occur with inversion of stereochemistry or racemization. This, along with other pieces of evidence (kinetics, effect of substrate structure, etc), is taken to indicate two possible pathways (mechanisms).

Addition Reactions	Intro-10
	Addition of H ₂
Know the reagents and	- H ₂ /Pd (alkene, alkyne)
outcomes	- H_2 /Lindlar catalyst (alkyne \rightarrow cis alkene)
(stereochemistry, regiochemistry)	 dissolving metal reduction (alkyne → trans alkene)
	Addition of H-Hal
Rationalize outcomes through	- Markovnikov
knowledge of reactive	- anti-Markovnikov
intermediates and reaction	Addition of H ₂ O
	- H ₃ O ⁺ (regiochemistry)
pathways (mechanism)	- Oxymercuration-demercuration
	(regiochemistry, stereochemistry)
	 Hydroboration-oxidation (regiochemistry, stereochemistry)
	 hydration of alkynes (regiochemistry)
	Addition of Hal ₂
	 Hal₂ (regiochemistry, stereochemistry)
	- Hal ₂ /H ₂ O (regiochemistry)
	Addition of carbenes
	Epoxidation
	Ring opening reactions of epoxides (H ₂ O, ROH, HCN)
	syn-Hydroxylation
	Oxidative cleavage of alkenes and alkynes
	- KMnO₄
	- Ozonolysis
	Radical Polymerization

Intro-17 **REVIEWING ORGANIC CHEMISTRY** -Make flash cards of reactions -Work problems to become familiar with reactions and mechanisms - Make an effort to understand the mechanistic principles rather than just trying to "learn reactions" - Retake Organic 1? **MAKING PROGRESS IN ORGANIC CHEMISTRY** -Make flash cards and flow sheets of reactions – use them! -Work problems to become familiar with reactions and mechanisms - Make an effort to understand the mechanistic principles rather than just trying to "learn reactions" - Develop regular study habits: Do the reading, HWebs, HWs....keep up-to-date - Work in a group: discuss chemistry with your peers

OBJECTIVES

- 1. Describe the interaction of alkenes with adjacent p-orbitals.
- 2. Discuss the influence of this interaction on the chemistry of dienes (relative to alkenes)
- 3. Describe the influence of conjugation on the ease of formation of carbocations and radicals (relative to alkyl radicals) and carbocations
- 4. Contrast the structure and reactivity of alkenes and benzene
- 5. Provide a theoretical basis for aromaticity: the observation that compounds with a benzene ring are particularly stable
- 6. Recognize that antiaromatic compounds are unstable

? Prob:13.1,22,36 ?

Problem [Solomons 13.33] – What are the **four** products with molecular formula C_4H_7CI formed upon treatment of $CH_3CH=CHCH_2OH$ with HCI?

?

? Prob: 1.4,32 ?

Problem - Provide a synthetic route to achieve the following	
transformation	
$ \rightarrow $	•

Huckel's rule: Compounds with (4*n*+2) π electrons (n=0,1,2...) in a planar cycle of p-orbitals are particularly stable ("aromatic").
Compounds with (4*n*) electrons in a planar cycle of p-orbitals are particularly unstable ("anti-aromatic").
Other compounds are non-aromatic

Problem [Solomons 4.22] – Why does 3-chloro-1,4-pentadiene undergo hydrolysis (S_N 1 reaction with H_2O) much more rapidly than 3-chloropentane? Why does 5-Chloro-1,3-cyclopentadiene undergo hydrolysis much more slowly? CI CI CI

TOPIC 1 ON EXAM 1

Types of Questions

- Predict the product of individual reactions (know the reagents!)
- Write a detailed mechanism for reactions (understand nucleophiles, electrophiles and radicals!)
- Provide IUPAC names for compounds (including common names for substituted benzenes; review rules from CHEM 2311)
- Assess stability of reactive intermediates and compounds (*i.e.*, resonance, aromatic versus anti-aromatic, Hückel's rule)
- Use spectra to identify compounds (use of NMR and IR!) Do other problems in the book - they are great examples of the types of

problems on the exam!

Preparing for Exam 1

- Get up-to-date NOW!
- Work as many problems as possible. Do the problems first, then consult the solutions manual
- Work in groups, discuss chemistry, teach and test each other
- Do the "Learning Group Problem" at the end of the chapter