TOPIC 2. REACTIONS OF AROMATIC COMPOUNDS (Chapters 15, parts of 20, and 21)

Add e.g. of SNAr, replace aniline example, turn BHT into and example

	OBJECTIVES					
1.	Describe the reactions between strong electrophiles and aromatic compounds (the nucleophilc component) which lead to substitution of a hydrogen atom on the aromatic ring.					
2.	Describe the reactions of anilines $(ArNH_2)$ and phenols $(ArOH)$ which take place on the nucleophilic ring or nucleophilic substituent.					
3.	Outline the mechanisms whereby aryl halides undergo nucleophilic substitution (NOT $\rm S_{N}1$ or $\rm S_{N}2)$					
4.	Describe various reactions of the side chain of aromatic compounds.					
5.	Use this knowledge to predict the products of these reactions and to be able to do single-step syntheses and multi-step syntheses using these reactions as well as the reactions previously studied.					

<i>Problem:</i> How would you prepare 2-phenyl-2-butanol?	OH	
		$\mathbf{9}$
	·	

? Prob: 15.29,33 ?		

? Prob: 15.26,27,31,32,34,35 ?

SYNTHETIC APPLICATIONS

S:15.14 Prob:15.29e-m, 38,41,43,45, 48,50,51,53

Consider how each substituent can be either: 1. Introduced by electrophilic substitution -Hal, -SO₃H, -NO₂, -R, -COR

or 2. Prepared by modification of an existing substituent $-CO_2H$ from -R $-CH_2R$ from -COR $-CH_2Br$ from CH_3 $-CH_2OH$ from CH_2Br

Consider whether reactions can really be performed: Directing effects of other substituents Effect of reagents/conditions on other substituents

Think RETROSYNTHETICALLY!

Using N-Acylation to Moderate Nucleophilicity of the Ring

? Prob: 21.13,16 ?

OXIDATION AND REDUCTION OF THE AROMATIC RINGS S:15.16 Reduction $\widehat{H_2/Ni}$ $\widehat{H_2/Ni}$ \widehat{heat} pressure \widehat{heat} \widehat{heat} pressure $\widehat{hH_3}$ $\widehat{hH_3}$ $\widehat{hH_3}$ $\widehat{hA_3}$ $\widehat{hA_3}$ $\widehat{hA_3}$ $\widehat{hA_3}$ $\widehat{hA_3}$ $\widehat{hA_3}$ $\widehat{hA_3}$

CHEM2312:

CHEM2312:

TOPIC 2 ON EXAM 2

Types of Questions

- Predict product of reactions S_EAr , S_NAr , reactions of substituents, diazonium salts
- Mechanisms S_EAr (incl. generation of electrophile), S_NAr (two pathways)
- The effect of substituents: rate of reactions, directing effects, relative acidity/basicity of phenols and anilines
- Design of multistep syntheses (including use of reactions from organic-I and earlier in semester)

Provide mechanistic rationale for experimental observations; use knowledge of mechanism to predict the outcome and pathways of reactions Do the problems in the book; they are great examples

of the types of problems on the exam!

Preparing for Exam 2

- Get up-to-date NOW!

- Work as many problems as possible. Do the problems first, then consult the solutions manual.
- Work in groups, discuss chemistry, teach and test each other.
- Do the "Learning Group Problem" at the end of the chapter.