

Optical Rotation

The observed rotation is

The observed specific rotation is $\left[\alpha\right] = \alpha / \mathbf{c} \cdot \mathbf{I}$

where c = concentration in g/mL and I = pathlength in dm $(1 \text{ dm} = 10 \text{ cm} = 10^{-1} \text{ m})$

The observed rotation, α or $[\alpha]$ depends on solvent, temperature and wavelength of the polarized light. Generally the sodium D line is used for the light sorce and the experiment is done at room temperature, 25 °C.

α

The specific rotation is then noted as $\left[\alpha\right]_{D}^{25}$ (conc./solvent)

The specific rotation of an optical pure chiral compound is a "property" like melting point or boiling point

The specific rotation of a given sample depends on it "optical purity"

Optical Purity

Problem: The [α] of the *R*-isomer of compound **A** is +100. What is the [α] of the *S*-isomer? What is the [α] of a equal mixture of the *R*- and *S*-isomers (racemic mixture)?

The % excess amount of one enanatiomer over the other is called the *enantiomeric excess* (ee). *e.g.*, 100 % one enantiomer, ee = 100 %; 50% one enantiomer, 50% other enantiomer, ee = 0 %.

Problem: The [α] of the *R*-isomer of compound **A** is +100. The [α] of a certain mixture of *R*- and *S*-isomers of compound **A** is -50 °. What is the ee of this mixture? What is the % *R*-isomer in this mixture?

IDENTIFICATION OF ORGANIC COMPOUNDS

1. COMBUSTION ANALYSIS ⇒ EMPIRICAL FORMULA

Measure mass of CO₂ and H₂O formed by combustion of a known mass of compound; data cited as mass % of each element present.

2. MASS SPECTRUM \Rightarrow MOLECULAR WEIGHT

3. EMPIRICAL FORMULA, MOLECULAR WEIGHT \Rightarrow MOLECULAR FORMULA

Molecular formula is an integral number of times the empirical formula

4. MOLECULAR FORMULAS; DETERMINATION OF "SODAR"

Sum of double bonds or rings ("SODAR")

For C,H,O,N,Hal: "SODAR" = (2#C + 2 - #H - #Hal + #N)/2If SODAR calculated from empirical formula is not a positive integral (or 0), this cannot be the molecular formula.

hydrocarbon b) aromatic	c) alcohol	d) halide

Compound A has the molecular formula, $C_{12}H_{18}$, and undergoes catalytic hydrogenation to give $C_{12}H_{24}$. What is the correct combination of rings and double bonds for compound A?

rings		double bonds
a)	0	4
b)	3	1
c)	1	3
d)	4	0
		l

